6.830 Lecture 7
3/10/2021

Today: Groups due -- sign up online

B+Tree property overview
Recap Indexes

B+-Trees:

Show example tree: (slide)

Q,{

Wi =L

/<V0d\

R

Je'u{‘L f’adc_s :“ng(F

Vies 5

Linge Borvrirs
Not going to discuss details of how insertion/splitting/rebalancing work.

Discussion points: (show slide)

- What is point of link pointers?
- Why not store data in intermediate nodes
- Page occupancy (why does this matter)

- Key size?

- Balanced (why important?)

- How many levels in practice

disk page = 4096 bytes; values 4 bytes; ptrs 4 bytes =512 ptrs /
node --> 512”4 = 68 billion

- log(n) for lookup/insert/delete; how many I/Os in practice?
(1, maybe 2, since top levels will fit in RAM,

E.g., top 2 levels are just 513 * 4096 bytes == 2MB)
- Scan is random, unless index is clustered

- Node format
"Fill factor": percentage of each page that is used.
Every node except root node is at least 50% full

Why would we not want this to be 100%?
|deally, 67% full (where from)?

Indexes Recap

O(1)

Insert O(logg n)

Delete O(P) O(loggn) O(1)
Scan O(P) O(logg n +R) -1 O(P)
Lookup O(P) O(logg n) O(1)

n : number of tuples

P : number of pages in file

B : branching factor of B-Tree
R : number of pages in range

Spatial/Multidimensional Indexes

Can index multi-dimensional data in a B-Tree, by creating composite keys (e.g.,
concatenate x/y coordinates together). But data will be ordered by X then Y (or Y
then X), which will be inefficient for finding data in a narrow range of Y (or X).

Slides show 2 such indexes, one of which was assigned readings: R*Trees and
QuadTrees.

R*Trees don't ensure non-overlapping bounding boxes; paper talks a lot about
how to optimize construction of bounding boxes. QuadTrees just recursively
subdivide space until some minimum density is reached.

Column Oriented Databases

We've been studying access methods and physical layout. Let's consider a different
organization of data on disk besides a single heap file per table.

So far we have studied physical data layout / heap files where data is laid out in a
particular way: namely each row is consecutive in the heap file. But we could do

something else -- and that's column stores. Let's understand the need for them by
looking at the database market.

Roughly divides into two major use cases:

1. Transaction processing -- lookups of one or a few records, lots of small updates
2. Analytics ("warehousing") -- large scans of data, (essentially) append-only, often
batch loads

(Show slide)

Together these represent about 90% of database sales, roughly evenly divided.
Let's think about scan performance:

Time is proportional to the number of records read.

Even if all columns aren't needed!

Why? Consider a magnetic disk -- entire record will pass under the head. Disk blocks
are 512+Bytes, so that's the minimum size we can read.

Record
about to be
read

®O

Mag
Disk

Take a simple stock table:

tickstore(symbol,price,quantity,exchange,date,...)
And a query like

select avg(price) from tickstore where symbol = 'gm' and date = '1/17/2012'
Column store idea: store each column in a separate file

now query only needs to 3/5 of the data (assuming it is answered through a

sequential scan.)

In reality large tables are often 100s of columns -- so this can easily save orders of
magnitude in 1/0O on sequential scans.

When is this a good idea?

-- if updates of individual records are infrequent (since updates will need to touch
multiple files now) -- batch updates are fine

-- if queries are mostly scan oriented

A bad idea w/ individual record lookups (since have to go to multiple pages), or when
doing lots of small updates.

Column stores are a perfect fit for traditional warehousing applications.
Over the past 8 or so years have come to dominate this business; offer 10--100x better
performance than the "row oriented" designs we have been studying on this kind of

workload.

C-Store was a system designed to address all of these issues.

Key features included:

- Column-oriented query executor

- Compression aware query execution
- Write optimized storage system

- Shared nothing horizontal partitioning for distributed execution

- Ability to run read-only transactions without locking
- Automatic database designer
Since we haven't talked about distributed execution or transactions yet going to focus
on the first three.
Executor:
Consider the query
SELECT avg(price)
FROM tickstore

WHERE symbol = ‘G’
AND date = “1/17/2007

A traditional executor would do:

AVG

price

Complete tuples f

SELECT
date="1/17/07’

r Complete tuples

SELECT
sym = ‘GM’

1 Complete tuples

Disk

Simplest way to build a column oriented design would be "early materialization"

Complete tuples

AVG

price

1 Complete tuples

SELECT

date="1/17/07"

‘ Complete tuples

Construct Tuples

GM | 30.77 | 1/17/07

/ / Disk \

GM 30.77 | | 1,000 (| NYSE | [1/17/2007
GM 30.77 | [10,000 | | NYSE | | 1/17/2007
GM 30.78 | [12,500 | | NYSE | | 1/17/2007

AAPL | [93.24 | | 9,000 | | NQDS | [1/17/2007

In contrast, what C-Store does is "late materialization":

W A
Prices
POSItIOﬂ Lookup

Position Bitmap
1,1,1,0)

Position Bitmap

(1,1,1,0) Position Bitmap

(1,1,1,1)

Pos.SELECT Pos.SELECT

date="1/17/07"

Disk
Gm | [30.77] [1,000 | [NvsE | [i/i7/2007
. GM | [30.77 | [10,000 | [NYSE | [1/17/2007
See Abadi et al GM | [30.78 | [12,500 | [NYSE | [1/17/2007

ICDE 07 AAPL | [93.24 | [9,000 | [NQDS| [1/17/2007

Reduces the amount of data flowing through memory all through the pipeline and also
facilitates direct operation on compressed data:

So how does compression work?
Idea is that the query processor can keep data compressed, and operate directly on
compressed data.

Multiple compression types:

- Run length encoding (1110000 --> 3x1,4x0)

- Gzip

- Delta Encoding (1.1, 1.2, 1.3 -> 1.1, +.1, +1)

- Block Dictionary ("sam", "sam", "Joe" ->1,1,2)
- Bitmap encoding ("M","M","F"F" --> 1100,0011)

Each column is compressed using the data that is best for it. So, for example, if data is
few valued and sorted, RLE will work great. If data is many valued and sorted, delta
may be better. For unsorted data, Gzip may be best.

Obviously sorted data compresses MUCH better w/ Delta & RLE. Note that we can
store sorted data because we don't expect a lot of updates or inserts (will return to how
we handle loading in a minute).

Note that we can "secondarily sort" data, where we sort on col A then col B, which will
result in B being "partially sorted". E.g.,, "a2,b2,a1,b 1", ==>"a1,a2,b 1, b2" and
we can still get (some of the) advantages of compression on these secondary sort
columns.

Really cool thing is that we can operate directly on compressed RLE and dictionary
data.

For example, can keep position bitmaps RLE encoded in previous example.

AVG
A

Prices

Only possible

with late Position Lookup

materialization! 1

Position Bitmap
(3x1,1x0)
[[anD
Position Bitmap . ’
(3x1,1x0) PosltI&r; 1B)utmap
b Pos.SELECT
Symi=K G date=' 1/17/07"

A

Disk
3xGM | [30.77 | [1,000 | [NYSE |ﬁ /1772007
[ixAPPL| | +0 | [10,000| 'NYSE

+.01 12,500 | | NYSE
+62.47| | 9,000 | | NQDS

Other examples:

- Can do position lookup on bitmap and dictionary data

- Direct aggregation on RLE and dictionary data

- Join runs of compressed RLE and dictionary data

- Min/max extracted directly from sorted data
Compression and sorting can be a huge win (show slide)
So how do we increase the amount of sorted data?

Store duplicate copies in different physical orders

Don't need to store all columns in these replicas -- can create "projections" that are
subsets of the columns. Database designer tries to do choose the sort orders and
projects that are optimal for a historical workload.

We can use these replicas both for performance and recovery!

Ok -- so now we've seen how query execution and performance are integrated. Let's
talk a little about writes.

Problem is that if system is compressed and sorted, inserts will be very expensive.
Even if we batch load, we don't want to rewrite everything whenever data is added.

So the idea is that there is a "write optimized" store sitting in front of the main "read
optimized" database.

- Y
d
Batched
Amortizes seeks
Queries read Amortizes
from both WOS recompression _ Y
and ROS Enables continuous

load

But this doesn't quite solve all of the problems, because we still seem to have to rewrite
whole WOS when tuple mover runs. So what to do?

Idea: store multiple ROS objects, instead of just one. Scan each one to answer a
query. Tuple mover can now create new ROS objects, rather than merging into main
object.

Must periodically merge ROS object to limit the number of objects that must be
scanned.

— > Read-optimized
. Column Store (ROS)
Older objects

Disk: data is sorted and
compressed

Tuple Mover

WOS

Now let's turn to the paper that was assigned this time -- "Column-Stores vs. Row-
Stores: How Different Are They Really?"

What is the key idea?

To study whether its possible to emulate the performance of column stores in existing
row oriented databases.

How did we do this?

Hired a professional DBA to help try out different physical database designs in Oracle.

What are the different ways you might emulate a column store?

Index only plans -- create an index for every column, and retrieve values from leaves of
index

Vertical partitioning -- create a one column table for each column

How do these systems stack up? (Show slide)

C-Store, Compression

C-Store, No Compression

C-Store, Early Materialize

Rows
Rows, Vert. Part.

Rows, All Indexes

What's going on here?

Vertical partitioning does badly because of two factors:

1) Tuple headers

Total table is 4GB

Each column table is ~1.0 GB

Factor of 4 overhead from tuple headers and tuple-ids

2) Merge joins

Answering queries requires joins

Row-store doesn’t know that column-tables are sorted
Sort hurts performance

Would need to fix these, plus add direct operation on compressed data, to approach C-
Store performance

Index only plans do worse!

Consider the query:

SELECT store_name, SUM(revenue) FROM Facts, Stores

WHERE fact.store_id = stores.store_id AND stores.country = “Canada”
GROUP BY store_name

Two WHERE clauses result in a list of tuple IDs that pass all predicates

Need to go pick up values from store_name and revenue columns
But indexes map from value-->tuple ID!

Column stores can efficiently go from tuple ID-->value in each column

Could we get C-Store like performance in a Row Store?

Maybe.

- Need to store tuple headers elsewhere (not require that they be read from disk w/
tuples)

- Need to provide efficient merge join implementation that understands sorted columns
- Need to support direct operation on compressed data

--- > Requires “late materialization” design

