6.814/6.830 Quiz 1 Review

Logistics

Wednesday during lecture

75 min + 5 min to upload solution

Covers material up to lecture 10

Open book/notes, but no googling please.
Email staff for special accommodation

Topics

e Schema design: Normal Forms, ER diagrams

e Query Optimization: Access methods, join algorithms, join ordering, cost
analysis

e Database internals: Buffer pool, iterator model, index structures

e Column stores for analytics

Relational Algebra

Projection

(R,cl, ..., cn) =Ty _nR

select a subset c1 ... cn of columns of R
Selection
o(R, pred) = 0,.q4R

select a subset of rows that satisfy pred
Cross Product (| |R|| = #attrs in R, |R| = #rows in row)
R1 X R2 (aka Cartesian product)

combine R1 and R2, producing a new relation with [[R1]] +
[IR2]] attrs, [R1] * [R2] rows

Join
(R1, R2, pred) =R1 Ng@g R2 = o (R1 X R2)

IMS v CODASYL v Relational

. |Ms_ | CODASL
Many to many x

relationships \/ \/

without

redundancy

Declarative, non
“navigational”
programming

Physical data
independence

N

Logical data
independence

N

Physical Data Independence

e Can change representation of data without
needing to change code

* Relational / SQL doesn’t specify how records are
stored
— No hashes, sort keys, etc.

— Users can change these without changing code!

* Both CODASYL and IMS expose representation-
dependent operations in their query API

Logical Data Independence

 What if | want to change the schema without
changing the code?

* Views allow us to map old schema to new
schema, so old programs work

Functional Dependencies

* XY

e Attributes X uniquely determine Y

— |.e., for every pair of instances x1, x2 in X, with y1,
v2inY, if x1=x2, yl=y2

 For Hobbies, we have:
1. SSN, Hobby = Name, Addr, Cost
2. SSN = Name, Addr
3. Hobby - Cost
— 2 &3 imply 1, by union under
Armstrong’s Axioms

Boyce-Codd Normal Form (BCNF)

* For arelation R, with FDs of the form XY, every FD is either:
1) Trivial (e.g., Y contains X), or
2) X is a key of the table

* If an FD violates 2), multiple rows with same X value may occur
— Indicates redundancy, as rows with given X value all have same Y value

— E.g., SSN = Name, Addr in non-decomposed hobbies schema
— Name, Addr repeated for each appearance of a given SSN

* To put a schema into BCNF, create subtables of form XY
— E.g., tables where key is left side (X) of one or more FDs
— Repeat until all tables in BCNF

BCNFify

BCNFify(schema R, functional dependency set F):

D ={(R,F)} //Dis set of output relations
while there is a (schema ,FD set) pair (S,F') in D not in BCNF, do:
given XY as a BCNF-violating dependency in F’
replace (S,F’) in D with
S1 = (XY,F1) and
S2 = ((S-Y) U X, F2)
where F1 and F2 are the FDs in F’ over XY or (S-Y) U X, respectively
End

return D

Database storage

e Heap file + Index(tree / hash)
e Index can be clustered (records sorted on indexed attribute on disk)

e Indexes can be on multiple attributes, but usually not multi-dimensional
(specialized structure such as R-Trees and Quad-trees do that)

e Data organized into pages and read into a buffer pool

Query Execution

I-ImovieTitIe
A
l>§/ \
starNanfe = narje
/’ 1
P \
/ ¥
o starsin
Obirthdaye..
/’ I Data flows
¢ from bottom to
movieStar top

Each operator implements a
simple iterator interface:

open(params)
getNext() - record

Any iterator can compose with
any other iterator

it1 = Scan.open(“movieStar’, ...)

it2 = Filter.open(it1, bday=x, ...)

it3 = Scan.open(“starsin”, ...)

it4 = Join.open(it2, it3,
starName=name)

itS = Proj.open(it4, movieTitle)

Database Cost models

*Typically try to account for both CPU and 1/O

— 1/O ="input / output”, i.e., data access costs from disk

-Database algorithms try to optimize for sequential access (to avoid massive
random access penalties)

*Simplified cost model for 6.814/6.830:
seeks (random I/Os) x random 1/O time +

sequential bytes read x sequential B/W

Access Methods

e Accessing records in a database
e 3 main types:

o

o

o

Heap scan (sequential scan)
Hash index lookup/scan
B-Tree (or other range index)
lookup/scan

Insert O(1) O(loggn)
Delete O(P) O(loggn)
Scan O(P) O(loggn+R)
Lookup O(P) O(loggn)

n : number of tuples

P : number of pages in file

B : branching factor of B-Tree

R : number of pages in range

0(1)
0(1)
-- / O(P)
0(1)

Access Methods

Access Method |Key Features

Heap file

Hash index

Records are unsorted

Search for records by sequentially scanning the entire file

Use if there are no available indexes on your search key or you expect to
return a large number of records

Typically points to an unsorted underlying heap file

Constant time search for records

Useful for finding a set of specific keys, not searching for ranges of keys
May not be worth using if you have to perform random 1/0 to access a large
number of records in the underlying heap file

Access Methods

Access Method |Key Features

B+ tree index

Clustered index

Typically points to an unsorted underlying heap file

Logarithmic time search for records (log,n)

Useful for finding a set of specific keys or scanning a range of keys

May not be worth using if you have to perform random 1/0 to access a large
number of records in the underlying heap file

Records in underlying file are sorted, eliminating need for random 1/0
Constant or logarithmic search

Useful for finding a set of specific keys or scanning a range of keys
Could be used as input to sort-merge join, to avoid sort step

Can have multiple indexes per table but only one clustered index!

Column Stores

e Store columns contiguously (likely w/ compression)

e Great for analytics, somewhat slow for transactions

Compression

e Multiple types:

Run-length encoding <- important

Dictionary <- important

Delta Value

LZ

Block Dictionary Bitmaps

Null Suppression

Other lossless compression schemes (e.g., gzip)

o o0 O O O O O

e Possible to execute queries without decompressing

Join Algorithms

Nested loops
e O(nm), where n is tuples in outer, m inner

e Only useful if the inner relation is very small, and therefore the overhead of building a hash table is not
worth it

e Block nested loops: Can operate on blocks of tuples of inner relation, to make more efficient; complexity
is then (nB), where B is number of blocks

Index nested loops
e Only possible if you have an index on the inner relation

e Efficient if the number of lookups you need to do on the index is small

Join Algorithms

In-memory hash
e If one of the tables can fit in memory, can create a hash table on it on the fly

e Pipeline lookups from other table (which may not fit in memory)
e Good choice for equality joins when there is no index

Simple hash
e Good choice if one of the tables almost fits in memory
e |/OcostisP(|R| +|S]|), where P is the number of partitions you split each relation into. Each partition P
must fit in memory
° |R| and |S| are the number of pages in relations R and S
e Always better to use Grace hash if P> 2
Grace hash

e Usually the best choice if neither relation can fit in memory
e |/Ocostis3(|R|+ [S])

Join Algorithms

Sort-merge
e Same I/O cost as Grace hash, but less efficient due to cost of sorting

e Could be a good choice if the relations are already sorted or you will need the output to be sorted on
the join attribute later in the query plan (e.g., ORDER BY)

Join Algorithms

Nested loops |R|+|S]| O({R}x{S}) Rin mem
Nested loops {SHR]| + |S] O({R}x{S}) No

Index nested loops (Rindex) |S| +{S}c (c=1o0r2) O({SHog{R}) No

Block nested loops |S| + B|R| (B=|S|/M) O({R}x{S}) No
Sort-merge |R|+|S]| O({S}Hog{s}) Both
Hash (Hash R) |R|+|S]| O({S} + {R}) Rin mem
Blocked hash (Hash S) |S| + B|R| (B=|S|/M) O({S}+ B{R}) No
External Sort-merge 3(|R| +|S|) O(P x {S}/P log {S}/P) No
Simple hash P(|R[+|S]) (P=|S|/M) O({R}+ {S}) No

Grace hash 3(IR] + [S]) O({R}+{S}) No

Query Optimization

e Cost estimation

o Selectivity estimation - Selinger stats, Histograms etc.
o Cost model

e Plan enumeration
o Push down selections

No cross products
Left deep plans
DP with entry for every sub plan
DP table is filled from the smallest sub-plan to the largest
Interesting orders

m Scan over primary index, sort merge join

m DP table has one entry per interesting order

o O O O O

Main Memory Databases

e Key differences with disk based systems
o Prefetching data and instructions
o Branches
o Function call overhead
e \ectorized (batched) processing
o Promote sequential access
o Amortize function calls
e Column stores
o Expensive field offsets

You are given the following schema and SQL query:

dept (did int primary key, bldg int, campus int) // 12 bytes per record

hobby (hid int primary key, hname char(17), cost int) //25 bytes per record

emp (eid int primary key, ename char(1l7), d int references dept.did) //25 bytes per record
hobbies (e int references emp.eid, h int references hobby.hid) //8 bytes per record

SELECT ename,bldg,SUM(cost)
FROM emp,dept,hobbies,hobby
WHERE emp.d = did

AND hobbies.e = eid

AND hobbies.h = hid

AND ename LIKE ’'%Sam%’
GROUP BY ename,bldg

You are given the following statistics (here, |A| denotes the number of tuples in relation A, and S (e) denotes
the selectivity of expression e).

Statistic Value
|empl| 10°
|dept| 10°
|hobby| 10°

|hobbies| 2x10°

S(ename LIKE ’%Sam%*) B |

Assume an integer is 4 bytes and a character is 1 byte, and that a disk page is 1000 bytes. Suppose you are
running in a system with 100 pages of memory. Assume that each employee has about the same number of
hobbies, and that hobbies and departments are assigned to employees uniformly and at random.

5. [10 points]: For now, assume that each join is a nested loops join and that there are no indices and
no projection operations. In the diagram below, in the boxes labeled A, B, C, and D, write the names of
the relations in the optimal left-deep join order for this plan. You should place the relation in the outer
loop of the join in the leftmost box. Also indicate where the filters from the query should be placed.
Some boxes may be empty. You should assume that the 100 pages of memory are optimally allocated
between the joins to minimize the amount of I/O required by the plan.

SUM(cost)
GROUP BY ename,bldg

/ e

f f

A B

6. [6 points]: Estimate the total number of disk pages read by the plan you drew above (do not worry
about seeks for this problem).

7. [6 points]: Estimate the number of tuples produced by the plan you drew above.

5. [10 points]: For now, assume that each join is a nested loops join and that there are no indices and
no projection operations. In the diagram below, in the boxes labeled A, B, C, and D, write the names of
the relations in the optimal left-deep join order for this plan. You should place the relation in the outer
loop of the join in the leftmost box. Also indicate where the filters from the query should be placed.
Some boxes may be empty. You should assume that the 100 pages of memory are optimally allocated
between the joins to minimize the amount of I/O required by the plan.

SUM(cost)
GROUP BY ename,bldg

20000
tuples

G

20000
tuples

10000
tuples

D | seqscan hobby

E

10000
tuples

C | seqscan hobbies
ename LIKE

'%Sam%

f !

A seqgscan emp B seqscan dept

Answer:

The hobby and dept tables can both fit into RAM. The emp and hobbies do not. By doing the emp-dept
join first, with emp as the outer, we are able to scan emp just once. We only scan dept once because
it fits into memory. We have to do the join with hobbies next (because the join with hobby would be
a cross product). Due to the constraints of left-deep plans, we must put the hobbies table on the inner,
requiring us to scan it once for each tuple output by the emp/dept join (10* times). Finally, we can do
the join with hobby; since hobby fits into memory, we only scan it once as well.

The following table summarizes the pages used by each of the tables:

Table Formula No. pages

emp 10%/(1000/25) 2500

dept 103/(1000/12) 12
hobby 103/(1000/25) 25
hobbies | 2 x 10°/(1000/8) 1600

6. [6 points]: Estimate the total number of disk pages read by the plan you drew above (do not worry
about seeks for this problem).
(Write your answer in the space below.)

Answer: The total I/O cost is one scan of dept + one scan of hobby + one scan of emp + 10* scans of
hobbies. Emp is 2500 pages, dept is 12 pages, and hobbies is 25 pages. Summing these numbers, we
get: 1.6x107 + 2500 + 12 + 25 ~ 1.6x107 pages

7. [6 points]: Estimate the number of tuples produced by the plan you drew above.
(Write your answer in the space below.)

The top-most join produces 20,000 records, but this represents only 10,000 distinct employees, so the
GROUP BY will output 10,000 values (assuming employee name are unique.)

