
6.814/6.830 Quiz 1 Review

Logistics

● Wednesday during lecture
● 75 min + 5 min to upload solution
● Covers material up to lecture 10
● Open book/notes, but no googling please.
● Email staff for special accommodation

Topics

● Schema design: Normal Forms, ER diagrams
● Query Optimization: Access methods, join algorithms, join ordering, cost

analysis
● Database internals: Buffer pool, iterator model, index structures
● Column stores for analytics

Database storage

● Heap file + Index(tree / hash)

● Index can be clustered (records sorted on indexed attribute on disk)

● Indexes can be on multiple attributes, but usually not multi-dimensional
(specialized structure such as R-Trees and Quad-trees do that)

● Data organized into pages and read into a buffer pool

Query Execution

Database Cost models

•Typically try to account for both CPU and I/O
 – I/O = ”input / output”, i.e., data access costs from disk

•Database algorithms try to optimize for sequential access (to avoid massive
random access penalties)

•Simplified cost model for 6.814/6.830:
seeks (random I/Os) x random I/O time +

 sequential bytes read x sequential B/W

Access Methods

● Accessing records in a database
● 3 main types:

○ Heap scan (sequential scan)
○ Hash index lookup/scan
○ B-Tree (or other range index)

lookup/scan

Access Methods
Access Method Key Features

Heap file
● Records are unsorted

● Search for records by sequentially scanning the entire file

● Use if there are no available indexes on your search key or you expect to

return a large number of records

Hash index
● Typically points to an unsorted underlying heap file

● Constant time search for records

● Useful for finding a set of specific keys, not searching for ranges of keys

● May not be worth using if you have to perform random I/O to access a large

number of records in the underlying heap file

Access Methods
Access Method Key Features

B+ tree index
● Typically points to an unsorted underlying heap file

● Logarithmic time search for records (log
B
n)

● Useful for finding a set of specific keys or scanning a range of keys

● May not be worth using if you have to perform random I/O to access a large

number of records in the underlying heap file

Clustered index
● Records in underlying file are sorted, eliminating need for random I/O

● Constant or logarithmic search

● Useful for finding a set of specific keys or scanning a range of keys

● Could be used as input to sort-merge join, to avoid sort step

● Can have multiple indexes per table but only one clustered index!

Column Stores

● Store columns contiguously (likely w/ compression)

● Great for analytics, somewhat slow for transactions

Compression

● Multiple types:
○ Run-length encoding <- important
○ Dictionary <- important
○ Delta Value
○ LZ
○ Block Dictionary Bitmaps
○ Null Suppression
○ Other lossless compression schemes (e.g., gzip)

● Possible to execute queries without decompressing

Join Algorithms
Join algorithm Key Features

Nested loops
● O(nm), where n is tuples in outer, m inner

● Only useful if the inner relation is very small, and therefore the overhead of building a hash table is not

worth it

● Block nested loops: Can operate on blocks of tuples of inner relation, to make more efficient; complexity

is then (nB), where B is number of blocks

Index nested loops
● Only possible if you have an index on the inner relation

● Efficient if the number of lookups you need to do on the index is small

Join Algorithms
Join algorithm Key Features

In-memory hash
● If one of the tables can fit in memory, can create a hash table on it on the fly

● Pipeline lookups from other table (which may not fit in memory)

● Good choice for equality joins when there is no index

Simple hash
● Good choice if one of the tables almost fits in memory

● I/O cost is P(|R| + |S|), where P is the number of partitions you split each relation into. Each partition P

must fit in memory

● |R| and |S| are the number of pages in relations R and S

● Always better to use Grace hash if P > 2

Grace hash
● Usually the best choice if neither relation can fit in memory

● I/O cost is 3(|R| + |S|)

Join Algorithms
Join algorithm Key Features

Sort-merge
● Same I/O cost as Grace hash, but less efficient due to cost of sorting

● Could be a good choice if the relations are already sorted or you will need the output to be sorted on

the join attribute later in the query plan (e.g., ORDER BY)

Join Algorithms
Algo I/O cost CPU cost In Mem?

Nested loops |R|+|S| O({R}x{S}) R in mem

Nested loops {S}|R| + |S| O({R}x{S}) No

Index nested loops (R index) |S| + {S}c (c = 1 or 2) O({S}log{R}) No

Block nested loops |S| + B|R| (B=|S|/M) O({R}x{S}) No

Sort-merge |R|+|S| O({S}log{S}) Both

Hash (Hash R) |R|+|S| O({S} + {R}) R in mem

Blocked hash (Hash S) |S| + B|R| (B=|S|/M) O({S} + B{R}) No

External Sort-merge 3(|R| + |S|) O(P x {S}/P log {S}/P) No

Simple hash P(|R|+|S|) (P=|S|/M) O({R} + {S}) No

Grace hash 3(|R| + |S|) O({R} + {S}) No

Query Optimization

● Cost estimation
○ Selectivity estimation - Selinger stats, Histograms etc.
○ Cost model

● Plan enumeration
○ Push down selections
○ No cross products
○ Left deep plans
○ DP with entry for every sub plan
○ DP table is filled from the smallest sub-plan to the largest
○ Interesting orders

■ Scan over primary index, sort merge join
■ DP table has one entry per interesting order

Main Memory Databases

● Key differences with disk based systems
○ Prefetching data and instructions
○ Branches
○ Function call overhead

● Vectorized (batched) processing
○ Promote sequential access
○ Amortize function calls

● Column stores
○ Expensive field offsets

