
6.5830/6.5831 Problem Set 1 (Fall 2022) 1

Problem Set 1: SQL

Release Date: September 12, 2022

Due Date: September 21, 2022 by 11:59 pm ET

1 Introduction

The purpose of this assignment is to give you hands-on experience with the SQL programming language. SQL is a declarative
language in which you specify the data you want in terms of its properties. This assignment focuses on the SELECT subset of
SQL, which is all about querying data rather than modifying it.

We will be using SQLite, which provides a standards-compliant SQL implementation. In reality, there are slight variations
between the SQL dialects of different vendors (PostgreSQL, MySQL, SQLite, Oracle, Microsoft, etc.)—especially with respect
to built-in functions. The SQL tutorial at http://sqlzoo.net/, provides a good introduction to the basic features of SQL.
After following this tutorial you should be able to answer most of the problems in this problem set. A more detailed tutorial is
available at https://www.sqlitetutorial.net/.

To install SQLite, you can simply use the command apt install sqlite3 on Debian-based Linux distributions like Ubuntu, or
brew install sqlite3 on Mac. Downloads for the pre-compiled binaries can be found at https://sqlite.org/download.
html for Windows (as well as Linux and Mac, if you’d prefer to install with the binaries). If you use a pre-compiled binary,
you might have to make sure that the path to your installed directory is in the PATH environment variable.

The SQLite SELECT documentation will be helpful to you, and you can access all the other SQLite documentation on that site
as well. You may also wish to refer to Chapter 5 of “Database Management Systems.”

Note that we are using SQLite 3.37.2 in the autograder.

2 Dataset

For this assignment, we use a dataset derived using data from the Massachusetts Bay Transportation Authority’s (MBTA) Open
Data Portal. This dataset includes information about the MBTA’s subway lines (e.g., lines, stations, ridership, etc.). Everything
you need to understand the dataset is contained in your SQLite database and this document.

The database tables include:

lines: contains the ID and name of each T rail line in the dataset. Note that the Silver Line is not included; even though its
name follows the same pattern, it does not operate on rails and is categorized as a Bus by the MBTA.

routes: details the different rail routes that operate on the lines; for example, the Red Line has one route which services
Braintree to Alewife and another distinct route which services Ashmont to Alewife. The table contains a unique route ID, the
route name, the ID of the line it belongs to, the IDs of the first and last stations of that route, and the direction, given in a binary
field and a string description.

stations: contains the ID and name of each T station in the dataset. Note that this stations list is a snapshot of the past (to be
specific, June 2020); newly opened stations, such as the Union Square station, are not included, and vintage stations, such as
the BU West station, are included.

station orders: describes the order of stations along each route. The table contains a route ID, station ID, number in the
order of that route, and distance (in miles) from the previous station to the current station. Note that all initial stations of each
route have a set distance of 0 since there is no previous station. In addition, all Green Line distances are set to NULL since the
MBTA did not provide a complete dataset in this case.

gated station entries: contains the number of people entering the gates of each station in half-hour increments. The table
contains the service date and time, station and line IDs (some stations have gates for multiple lines; i.e. Downtown Crossing

http://sqlzoo.net/
https://www.sqlitetutorial.net/
https://sqlite.org/download.html
https://sqlite.org/download.html
https://sqlite.org/lang_select.html
https://mbta-massdot.opendata.arcgis.com
https://mbta-massdot.opendata.arcgis.com

6.5830/6.5831 Problem Set 1 (Fall 2022) 2

is a station on both the Red and Orange lines), and number of entries. Note that the number of gated entries are sometimes
not whole numbers in the table; if you aggregate over multiple lines on the same station most should sum to a whole number
(except for stations which exist on the Silver Line, like South Station).

rail ridership: includes ridership trends for Fall 2017, 2018, and 2019 over various time slices of the week. The table
contains the season (i.e. “Fall 2017”), line ID, direction, time period ID, and station ID as the primary key; further, we have the
total number of people who got on the train, the total number of people who got off the train, the number of non-holiday days
in operation during that portion of the season, the average number of people who got on the train per operating day, the average
number of people who got off the train per operating day, and the average flow, or number of people who were in the train but
did not board or disembark at that station.

time periods: identifies time slices of the week used to interpret rail ridership patterns. The table contains an ID for each time
period (e.g., time period 01), the type of day (e.g., weekday), a textual description of the time period (e.g., AM PEAK), and the
start and end times for the time slice in 24 hour notation (e.g., 03:00:00).

3 Using the Database

Download the database file and starter code from the Lecture Notes and Assignments page on the class website. To access the
SQLite shell for the database, cd to the directory where you saved the database file and run:

sqlite3 mbta.sqlite

Once in the SQLite shell, there are two kinds of commands useful to a database user: client meta-commands and SQL com-
mands.

3.1 Client Meta-Commands

The most important one, of course, is .help, which gives you help on meta-commands:

sqlite> .help
.auth ON|OFF Show authorizer callbacks
.backup ?DB? FILE Backup DB (default "main") to FILE
.bail on|off Stop after hitting an error. Default OFF
.binary on|off Turn binary output on or off. Default OFF
.cd DIRECTORY Change the working directory to DIRECTORY
.changes on|off Show number of rows changed by SQL
...

We can list all the table schemas in the database with .tables:

sqlite> .tables
gated_station_entries routes time_periods
lines station_orders
rail_ridership stations

We can view the schema (recall, that the “schema” of a database is like a class definition in an object oriented language) of a
given table using .schema <table name>:

sqlite> .schema routes
CREATE TABLE routes (

route_id INTEGER,
line_id TEXT,
first_station_id TEXT,
last_station_id TEXT,

http://dsg.csail.mit.edu/6.5830/assign.php

6.5830/6.5831 Problem Set 1 (Fall 2022) 3

direction INTEGER,
direction_desc TEXT,
route_name TEXT,
PRIMARY KEY (route_id)

);

You can change the way the SQLite shell displays the result sets to suit you better. In particular, you may find the commands
.header on and .mode column useful.

Finally, to exit the SQLite shell, you can use .exit

3.2 SQL Commands

All SQL queries in SQLite must be terminated with a semi-colon. For example, to get a list of all records in the stations table,
you would type:

SELECT * FROM stations LIMIT 10;

This query requests a maximum of 10 rows from the table. Using LIMIT in this manner one can explore the data small bits at a
time. If you really wanted to produce all the records, though, the query is:

SELECT * FROM stations;

You can use Ctrl+C to end a query that is taking too long. Note that using the LIMIT keyword, when used by itself, offers no
guarantee on which 10 rows from the result are returned, so do not assume an ordering.

4 Questions

Q1. Find all stations which are at least 1 mile away from the previous station. Report the station ID, route ID, and distance
(in miles) to the previous station, sorted by decreasing distance. Break ties in distance by sorting by route ID and then
station ID, both in ascending order. Display the output like ‘place-abcde|0|10.0’. [5 points]

Q2. Find the first and last station for each line’s routes. Report the line name, route direction name, and first and last station
name. Sort the results by the line name, direction name, first station name, and then last station name—all in ascending
order. Display the output like ‘Green Line|East|Some Station Name|Another Station Name’. [5 points]

Q3. Report the historical total ons on weekdays at 4:00 PM per season for the “Kendall/MIT” Red Line station. Report the
season, line ID, direction, and total ons, sorted by the season and direction in ascending order. Display the output like
‘Fall 2017|red|0|21390’. [5 points]

Q4. For each station in each season, find the sum of all people who departed the station. (That is, find the sum of the number
of total offs over different lines, directions and time periods, but do not sum over different values for season.) Report
the station name, season, and summed total offs value, sorted by that summed value in descending order. Break ties in
the summed total offs value by sorting by season and then station name, both in ascending order. Display the output
like ‘South Station|Fall 2017|21100’. [10 points]

Q5. Find the station(s) with the most gated entries over the entire month of June 2021. Report the station name(s) and the
number of gated entries, sorted by station name in ascending order. Display the output like ‘Airport|42.0’. [10 points]

Q6. Find the station, time period, and season with the largest number of people who boarded (the largest “total ons”). A
station may be associated with multiple directions; consider these directions to be distinct for the purposes of finding
the largest total ons (e.g., the total ons for Kendall/MIT with a direction of 0 should be considered separately from

6.5830/6.5831 Problem Set 1 (Fall 2022) 4

the total ons for Kendall/MIT with a direction of 1 when you are computing the largest total ons). Report the day -
type, period start time, season, line id, station name, and total ons for this station. Display the output like
‘saturday|9:00:00|Fall 2019|blue|Wonderland|21510’. [10 points]

Q7. Find every Red Line station in Fall 2019 that, during time period 11 and the direction of 1, had a total ons passenger
count that was greater than average for all Red Line stations at that same time period, same season, and in the same
direction. Report the station name and the total ons value. Sort the results by total ons in descending order and then
station name in ascending order. Display the output like ‘Alewife|21400’. [10 points]

Q8. For each line, find all stations on that line which are 1 or 2 stops from that line’s most popular station(s). Such popular
station(s) are the station(s) with the largest aggregate gated entries value over all seasons, time periods, and directions.
Display the line name, the name of the station on that line with the largest gated entries value, the name of the station
that is within 2 stops of that station, and the near-popular station’s aggregate gated entries value for that line. Sort the
results by line name, the popular station’s name, and then the station within 2 stops’ name, all in ascending order. Be
sure not to repeat any rows! Display the output like ‘Red Line|Broadway|South Station|21270.0’. [15 points]

Q9. For each line, in the Fall 2019 season, find the “maximally bypassed station”. That is, the station that has the largest
ratio between two quantities: (1) the sum of its average flow values for all time periods and all directions, and (2) the
total sum of: the sum of its average ons and sum of its average offs values. Report the station name, its line name,
its summed average flow and the sum of its average ons and average offs values. Sort the results by line name in
ascending order. Display the output like ‘Some Station|Green Line|123|456’. [15 points]

Q10. Using a recursive SQL query, find the total length in miles and number of stations of each line’s routes. Report the
route id, direction, route name, number of stations, and length in miles for each route. Exclude the green line
since the distance between stations is missing. Sort the results by route id in ascending order. Display the output like
‘0|0|Wonderland to Bowdoin|42|8.0’. [15 points]

5 Submission

You may work in pairs on this problem set. Only one of you needs to submit on Gradescope, but the other member must
be added as a group member on the submission.
Do not hard code answers into your SQL queries. We will execute your queries using different data with the same schema.

Answer each question in the corresponding file under the submission directory in the handout. After filling in the queries,
compress the folder by running the following command:

zip -j submission.zip pset1/*.sql

The -j flag lets you compress all the SQL queries in the zip file without path information. The grading scripts will not work
correctly unless you do this.

Each submission will be graded based on whether the SQL queries fetch the expected sets of tuples from the database. Note
that your SQL queries will be auto-graded by comparing their outputs (i.e. tuple sets) to the correct outputs. For your queries,
the order of the output columns is important; their names are not. We will be comparing the output files using a function similar
to diff. You can submit your answers as many times as you like.

We use the Autograder from Gradescope for grading in order to provide you with immediate feedback. The autograder will
timeout after 10 minutes. If a query is taking too long, try changing it. All questions have solutions that run within seconds.
Please be aware that we use a modified version of the database for grading purposes.

After completing the homework, you can submit your compressed folder submission.zip (only one file) to Gradescope:
https://www.gradescope.com/courses/421252. See Piazza if you need the entry code.

https://www.gradescope.com/courses/421252

6.5830/6.5831 Problem Set 1 (Fall 2022) 5

6 Changes Since Release

• [09/20/2022] Q6 – Direction clarification. We added a clarification sentence to the question: “A station may be asso-
ciated with multiple directions; consider these directions to be distinct for the purposes of finding the largest total ons
(e.g., the total ons for Kendall/MIT with a direction of 0 should be considered separately from the total ons for
Kendall/MIT with a direction of 1 when you are computing the largest total ons).”

• [09/13/2022] Q7 – Missing season. The question should read “Find every Red Line station in Fall 2019 that, [...]”.

• [09/13/2022] Q7 – Same season. The question should read “greater than average for all Red Line stations at that same
time period, same season, and in the same direction.”

• [09/13/2022] Q8 – Popular stations. The question should read “For each line, find all stations on that line which are 1
or 2 stops from that line’s most popular station(s). [...]”

• [09/14/2022] Q8 – Gated entries per line. The question should read “the name of the station that is within 2 stops of
that station, and its aggregate gated entries value for that line.”

• [09/15/2022] Q8 – Near-popular gated entries. The question should read “the name of the station that is within 2 stops
of that station, and the near-popular station’s aggregate gated entries value for that line.”

• [09/13/2022] Q9 – Output format correction. The summed average flow, average ons, and average offs values
should be reported as integers because the underlying columns are also integers. We updated the output example.

	Introduction
	Dataset
	Using the Database
	Client Meta-Commands
	SQL Commands

	Questions
	Submission
	Changes Since Release

