6.5830 Lecture 10 —
Column Stores ctd

10/07/2024




Where are we

Admission Control

Connection Management

Query System
Today’s recap Selinger estimates and
Column Store Compression

We will talk about transactions after
quiz 1.

Rewriter

Q Lec 8/9 — Optimizer (last time and more today)

Lec 7 — Join Algos

Storage System
Buffer Lock Log
Manager Manager Manager

Lec 9/10 — Column Stores Access

Methods




Steps:

1. Estimate sizes of relations - s mem
AR Estimate selectivities $ I g S I t t
3. Compute intermediate size e I n er e ec IVI Ies
4. !Evaluate cost of plan F(pred) = Selectivity of predicate = Fraction of records that a
operatlo_ns predicate does not filter
S. Find best overall plan
NCARD(R) - "relation cardinality" - number of records in
Predicate types R
TCARD(R) - # pages R occupies
1. col=val ICARD(I) - # keys (distinct values) in index |
F = 1/ICARD(col) (if index available) NINDX(1) - pages occupied by index |

F =1/10 otherwise Min and max keys in indexes

2. col>val \_A Modern DBs use fancier stats!
(max key - value) / (max key - min key) (if index available)

1/3 otherwise

3. coll =col?

1/MAX(ICARD(col1), ICARD(col2)) (if index available) Assumes key-foreign key join
1/10 otherwise Note a better estimate is 1/ICARD(PK table)

We use 1/ICARD(PK table) going forward

Important: not all joins are FK to PK
- equation on the left is still important



Brod N 5 Product Example Order OrderLine
t (B | Name
Ordor LT SNamD, Addans) m B @. @Em

Customer(CName, Name) Chocolate Donut 1 Cambridg 1 1
Orderline (Pid. Oid, Amount) 2  Glazed Donut 1 © 1 4 1
Special_Products (Pid) 3 Boston Créme 15 2 Tim  Arlington ) 1 3
Donut 3 Mike  Newton ) 3 X
4 Sprinkles Donut 1 NCARD(O)=3
_ ICARD,;4(0)=3 SHE 15 3
5 Cinnamon Donut 0.5 3 1 3
6 MIT special 1.5
3 4 2
NCARD(P)=6 |ICARD,;.(P)3 P B
ICARD,4(P)=6 MIN,,(P)=0.5
SELECT * MAX,ice(P)=1.5 NCARD(OL)=8
FROM Orderline ol ICARD 4 ,i4(OL)=8
join Product p on ol.pid = p.pid ICARD,;4(OL)=3

WHERE price >= 1 ‘ ICARD,;4(OL)=4

HashdJoin oi.pid=p.pi
oLpid=p-pid Clicker (http://clicker.mit.edu/6.5830 )
What is the selectivity of F,

(assuming only the Selinger stats)

. F
- Filter prices=1 ' A) 0.5
C,=8 price==1 B) 0.3333

\ C,=6 ©C) 0.7777

D) 0.83333333333
SeqScan SeqScan
Orderline ol Product p


http://clicker.mit.edu/6.5830

Brod N 5 Product Example Order OrderLine
t (B | Name
Ordor LT SNamD, Addans) m B @. mmm

Customer(CName, Name) Chocolate Donut 1 Cambridg 1 1
Orderline (Pid. Oid, Amount) 2  Glazed Donut 1 © 1 4 1
Special_Products (Pid) 3 Boston Créme 15 2 Tim  Arlington ) 1 3
Donut 3 Mike  Newton ) 3 5
4 Sprinkles Donut 1 NCARD(O)=3
_ ICARD,;4(0)=3 SHE 15 3
5 Cinnamon Donut 0.5 3 1 3
6 MIT special 1.5
3 4 2
NCARD(P)=6  ICARD,(P)3 - -
ICARD,;4(P)=6  MIN,..(P)=0.75
SELECT * MAX,ice(P)=1.5 NCARD(OL)=8
FROM Orderline ol ICARD 4 ,i4(OL)=8
join Product p on ol.pid = p.pid ICARD,;4(OL)=3
WHERE price >= 1 ‘ ICARD,;4(OL)=4
HashJoin ol.pid=p.pid F,
Clicker (http://clicker.mit.edu/6.5830 )
What is the selectivity of F, C;=6%0.5=3
assuming only the Selinger stats . ,
,(A\) 1/8 I ony J (%1 =8 Filter prices=1 F,= (max key - value) / (max key - min key)
B) 1/6 =(1.5-1)/(1.5-0.5)=0.5
C) 1/3 \ C,=6
D) 1 SeqScan SeqScan

Orderline ol Product p


http://clicker.mit.edu/6.5830

Product Exam ple Order

OrderLine
Product (Pid, Name, Price) m cid |Address
Order(Oid. CName Address) @ Price M-- m@m
Customer(CName, Name) Chocolate Donut 1 Cambridg 1 1
Orderline (Pid. Oid, Amount) 2  Glazed Donut 1 © 1 4 1
Special_Products (Pid) 3 Boston Créme 15 2 Tim  Arlington ) 1 3
Donut 3 Mike  Newton ) 3 5
4 Sprinkles Donut 1 NCARD(O)=3
. ICARD,,,(0)=3 3 5 3
5 Cinnamon Donut 0.5 3 1 3
6 MIT special 1.5 3 4 )
NCARD(P)=6 ~ |CARD, ,;.,(P)3 T
ICARD,o(P)=6 MIN_.(P)=0.75
SELECT * MAX . .o(P)=1.5 NCARD(OL)=8

FROM Orderline ol
join Product p on ol.pid = p.pid
WHERE price >=1 ‘

F,=1/PK=1/6 HashJoin olpid=p.pid

join

C,=24*1/6=4

w/o predicate

ICARD 4 4(OL)=8
ICARD,,,(OL)=3
ICARD,(OL)=4

=3 * 8 = 24 (cartesian product)

F, = (max key - value) / (max key - min key)

C;=6*05=3
C,=8 Filter price >=1
\ C,=6
SeqScan SeqScan

Orderline ol Product p

=(15-1)/(1.5-0.5)=0.5



Product Exa m p I e Reviews OrderLine
Product (Pid, Name, Price) m
Order(Oid, CName, Address) m m g“ @@m

Customer(CName, Name) Chocolate Donut 1 1
Orderline (Pid. Oid, Amount) 2  Glazed Donut 1 ! Good 14 1
Reviews (Pid, Review) 3 Boston Créme 15 2 1 Good ) 1 3
Donut 3 2 Bad
- 2 3 2
4 Sprinkles Donut 1 3 2 OK
Ci Donut 0.5 3 > 3
5 innamon Donu . NCARD(O)=3 3 1 3
6  MIT special 1.5 ICARD,;4(O)=3 _— >
NCARD(P)=6 'ARDpice(P)3  ICARD,;4(0)=2 — T
ICARD,;4(P)=6 m\kr.cg(? 0155
SELECT * orice(P)= {\éigl'\l’jD(O)( S
FROM Orderline oid,pid
join Review r on r.pid = ol.pid ICARD,;4(O ; j

WHERE oid = 1 ‘ ICARD,4(O

HashJoin olpid=p.pid >
Clicker (http://clicker.mit.edu/6.5830 )

What is the selectivity of F, C;=8/4=2
assuming only the Selinger stats .

,(A\) 1/8 90my J ()31=4 Filter oid-1 F,=1/4
B) 1/4 ~

C) 1/2 \ C,=8

D) 1 SeqScan SeqScan

Review r Orderline


http://clicker.mit.edu/6.5830

Product Exa m p I e Reviews OrderLine
Product (Pid, Name, Price) m
Order(Oid, CName, Address) m m g“ @@m

Customer(CName, Name) Chocolate Donut 1 1
Orderline (Pid. Oid, Amount) 2  Glazed Donut 1 ! Good 14 1
Reviews (Pid, Review) 3 Boston Créme 15 2 1 Good ) 1 3
Donut 3 2 Bad
2 3 2
4 Sprinkles Donut 1 3 2 OK 3 . 3
5  Cinnamon Donut 0.5 NCARD(O)=3
6 MIT special 1.5 ICARD,4(0)=3 2 l 2
— ICARD =2
NCARD(P)=6  |CARD,;(P)=3 CARD,i4(O) —
ICARD ;4(P)=6  MIN;.(P)=0.5
SELECT * MAX price(P)=1.5 NCARD(0)=8
FROM Orderline ICARD 414(0)=8
join Review r on r.pid = ol.pid ICARD,;4(O ; j

WHERE oid = 1 ‘ C,=8/4=2 ICARD,,(0

C.... w/o predicate

HashJoin oi.pid=ppid join .
=4 * 2 = 8 (cartesian product
F,= 1/ max(ICARD 4(0), ICARD,,4(O)) (cartesian product)

= Max(2, 4) = 1/4 Cs=8/4=2
C,=4 Filter o=+ F,=1/4
\ C,=8
SeqScan SeqScan

Review r Orderline






Memory/Disk

Linearizing a Table — Row store  |™<**

R1C1
R1C2
R1C3
R1C4

R1C5
R2 C1

R2 C2
R2 C3
R2 C4
R2 C5
R2 C6
R3C1
R3 C2
R3 C3
R3 C4
R3 C5
R3 C6
R4 C1
R4 C2
R4 C3
R4 C4
R4 C5
R4 C6




Linearizing a Table — T
Column Store

(Linear Array)

R1C1
R2 C1
R3C1
R4 C1

R5C1
R1C2

R2 C2
R3 C2
R4 C2
R5 C2
R6 C2
R1C3
R2 C3
R3 C3
R4 C3
R5C3
R6 C3
R1C4
R2 C4
R3 C4
R4 C4
R5 C4
R6 C4




Tables Often Super Wide

Data warehouse at Cambridge Mobile

Telematics

Table #columns
tl 251
t2 248
t3 134
t4 107
t5 87
t6 83
t7 71
t8 54
t9 52
t10 45

Average query access 4-5 fields
Top 2-3 tables involved in nearly every query

Using a row-store would impose ~200/4 =
50x performance overhead



Query Processing Example
price
date="1/17/07’

SELECT
sym = ‘GMW’

__GM | 3077 | 1,000 | NYSE [1/17/2007
__GM | 30.77 | 10,000 | NYSE |[1/17/2007
_GM | 30.78 | 12500 | NYSE |[1/17/2007
| AAPL | 9324 | 9,000 | NQDS [1/17/2007




Query Processing Example

SELECT
date="1/17/07’

Construct Tuples

EEalg




Query Processing Example

Much less data
flowing through

Position Lookup memory
Position Bitmap
(1 !1 !1 !0)
Position Bitmap
‘ (1 ,1 11 ,1)

Pos.SELECT Pos.SELECT

sym = ‘GMW’ date="1/17/07’




Column-Oriented Compression

- 3xGM | 30.77 3xNYSE 4 x 1/17/2007
1XAPPL| 30.77 1XNQDS

. GM | 307 NYSE [ 1/17/200
AAPL 9,000 | NGDS | 7

1/17/200



* Replace repeated values with a count and a
il value

 For single values, use a run length of 1
S  Naively, can increase storage space

-+ Can use a shorter bit sequence for 1s, at
the cost of more expensive
decompression




e Many variants; simplest is to replace string
values with integers and maintain a
dictionary

 le.,, AAPL, AAPL, IBM, MSFT -




LZ (“Lempel Ziv’) Compression

e General purpose lossless data compression

Builds data dictionary dynamically as it runs

 Add new bit strings to the dictionary as
they are encountered

* Treat entire column as a document




- * Encode values with fewest possible bits

+ Each value becomes bit-length (e.g., 0-8 or 0-32),
followed by value in that many bits

~ + Eg.,:12377
~ * Need 1, 2, 6, and 3 bits respectively
- * Each number becomes 3 bit header and encoded

~ value
5 gl i 0x001, Oxl1

- 0x010, 0x10



e Consecutive values encoding as difference to
previous values

¢l 1 b2 1 3l e 1+
- After encoding as deltas, bit-pack

- Works if deltas can be represented in fewer
bits than whole values

: 2.9., floats with small variations

o, ; Q‘.‘




e Encode few valued columns as bitmaps
e MMMFF-> 11100, 00011

e |f fewer distinct values than bitwidth of
field, saves space

e Bitmaps can be further compressed, e.g.,
using RLE

very good for certain kinds of

o % |
pS s E T PN 1
" { r A o AL
E ¢ ¥ S . ;



Sorted Data




Operating on Compressed Data
AVG

Position Lookup

Compression P

Pos.SEL SELECT
Aware | SELE

4x1/17/200
7




1 Compressed data used directly for position lookup
e RLE, Dictionary, Bitmap




How can we get more sorted data?
: Store duplicate copies of data

. ) ]
A5

_ Use different physical orderings

- = Improves ad-hoc query performance

'ﬁ.I

.

ompressed data

"

i o

Due to ability to directly operate on sorted

X
&

¥ it




- * For each of the following columns, what compression
~ method would you recommend?

(Choose any combination of A. RLE, B. Dictionary, C.
- Bitmap, D. Delta, E:LZ, F: Bit-Packing)




Write Performance

Trickle load: Very
Fast Inserts

Tuple Mover

Asynchronous Data
Movement




When to Rewrite ROS Objects?

Older objects




Problem: Lots of Partitions

e Performance will degrade as you get many partitions

e Idea: merge some partitions together, but how?

e Log structured merge tree: arrange so partitions merge a logarithmic
number of times



Problem: Lots of Partitions

e Performance will degrade as you get many partitions

e Idea: merge some partitions together, but how?

e Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P3 P4 PS5
P1-2



Problem: Lots of Partitions

e Performance will degrade as you get many partitions

e Idea: merge some partitions together, but how?

e Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P5 P7
P1-2 P3-4




Problem: Lots of Partitions

e Performance will degrade as you get many partitions

e Idea: merge some partitions together, but how?

e Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P7
P1-2 P3-4 P5-6




Problem: Lots of Partitions

e Performance will degrade as you get many partitions

e Idea: merge some partitions together, but how?

e Log structured merge tree: arrange so partitions merge a logarithmic
number of times

P1 has merged 2 times, but won’t merge again until after 8 more
partitions arrive



Column-Oriented Data In Modern Systems

e C-Store commercialized as Vertica

« Although it wasn’t the first column-oriented
DB, it led to a proliferation of commercial
column-oriented systems

« Now the de-facto way that analytic database
systems are built, including Snowflake,
Redshift, and others.

« One popular open-source option: Parquet



Efficient Data Loading: Parquet

« Parguet is column-oriented file format that is MUCH
more efficient than CSV for storing tabular data

« Vs CSV, Parquet is stored in binary representation
« Uses less space
e Doesn’t require conversion from strings to internal

types
e Doesn’t require parsing or error detection

e Column-oriented, making access to subsets of
columns much faster




« Data is partitioned sets of rows, called “row groups”

Parquet Format

« Within each row group, data from different columns is stored separately

Row
Group

Row
Group

Row
Group N

Header: Offset of start of each row / column group, and ranges of records

in each row group

Col 1 Block 1 Col 2 Block 1 Col 3 Block 1
Col 1 Block 2 Col 2 Block 2 Col 3 Block 2
Col 1 Block 3 Col 2 Block 3

Col 1 Block 4 Col 2 Block 4 Col 3 Block 3
Col 1 Block 5 Col 2 Block 5 Col 3 Block 4
Col 1 Block 6

Col 1 Block i Col 2 Block j Col 3 Block k
Col 1 Block i+1 Col 2 Block j+1 Col 3 Block k+1

Using header, can
efficiently read any
subset of columns or
rows without
scanning whole file
(unlike CSV)

Within a row group,
data for each column
is stored together



Predicate Pushdown w/ Parquet & Pandas

pd.read parquet(‘file.pq’, columns=[‘Col 1’, ‘Col 2'])
e Only reads coll and col2 from disk

e For a wide dataset saves a ton of I/O

Header: Offset of start of each row / column group, and ranges of
records in each row group

Row Col1 Bock1 . Col 3 Block 1
Group 1 Col 1 Bock 2 Col 3 Block 2

Col 1 Block 3 ‘
Row Col 1 fock 4 | Col 3 Block 3
Group 2 Col1 Mock 5 Col 3 Block 4

Col 1 Bock 6

Col 1!ck i | Col2BIkj Col 3 Block k
Row | |
Group N | Col 1 Block i+1 Col 2 Block j+1 Col 3 Block k+1

' Col 1 Block i+1



Performance Measurement

e Compare reading CSV to parquet to just columns we need

t = time.perf_counter()
df = pd.read_csv("FARS2019NationalCSV/Person.CSV", = "IS0-8859-1")
print(f"csv elapsed = {time.perf_counter() - t:.3} seconds")

t = time.perf_counter()
df = pd.read_parquet("2019.pq")
print(f"parquet elapsed = {time.perf_counter() - t:.3} seconds")

t = time.perf_counter()
df = pd.read_parquet("2019.pq", = ['STATE', 'ST_CASE', 'DRINKING', 'PER_TYP'])

print(f"parquet subset elapsed = {time.perf_counter() - t:.3} seconds")

csv elapsed = 1.18 seconds
parquet elapsed = 0.338 seconds 47x speedup
parquet subset elapsed = 0.025 seconds



When to Use Parquet?

« Will always be more efficient than CSV

« Converting from Parquet to CSV takes time, so only makes sense to do
so if working repeatedly with a file

« Parquet requires a library to access/read it, whereas many tools can
work with CSV

« Because CSV is text, it can have mixed types in columns, or other
inconsistencies
e May be useful sometimes, but also very annoying!
e Parquet does not support mixed types in a column



Summary

« Column oriented databases are a different way to “linearize” data to
disk than the row-oriented representation we have studied

e A good fit for “warehousing” workloads that mostly read many
records of a few tables

« C-Store system implements many additional ideas:
« “Late materialization” execution
« Column-specific compression and direct execution on compressed data
« Read/write optimized stores

« [deas have found their way into many modern systems and libraries,
e.g., Parquet



