
6.5830 Lecture 10
Transactions

10/16/2022
Project proposals are due today

Quiz 1 results (Wednesday)

The Lecture Art Collection So far

Today’s Art

Where Are We?

• So far:
– Studied relational model & SQL
– Learned basic architecture of a database system
– Studied different operator implementations
– Looked at several data layouts
– Saw how query optimizer works with statistics to select plans

and operators

• What next:
– Concurrency Control and Recovery: How to ensure correctness in

the presence of modifications and failures to the database
– Distributed and parallel query processing
– “Advanced Topics”

Next 4 lectures

Concurrency Control Key
Idea: Transactions

• Group related sequence of actions so they are
“all or nothing”
– If the system crashes, partial effects are not seen
– Other transactions do not see partial effects

• A set of implementation techniques that
provides this abstraction with good
performance

ACID Properties of Transactions

• A tomicity – many actions look like one; “all or
nothing”

• C onsistency – database preserves invariants
• I solation – concurrent actions don’t see each

other’s results
• D urability – completed actions in effect after

crash (“recoverable”)

Concurrent Programming Is Hard

• Example:
T1
t = A
t = t + 1
A = t

• Looks correct!
• But maybe not if other updates to A are interleaved!
• Suppose T1 increment runs just before T2 increment
– T1 increment will be lost

• Conventional approach: programmer adds locks
– But must reason about other concurrent programs

T2
t = A
t = t + 1
A = t

A = 0A = 0 1A = 0 1 1

Transactions Dramatically Simplify
Concurrent Programming

• Concurrent actions are serially equivalent
– I.e., appear to have run one after the other

• Programmer does not have to think about
what is running at the same time!

• One of the big ideas in computer science

SQL Syntax

• BEGIN TRANSACTION
– Followed by SQL operations that modify database

• COMMIT: make the effects of the transaction
durable
– After COMMIT returns database guarantees

results present even after crash
– And results are visible to other transactions

• ABORT: undo all effects of the transaction

This Lecture: Atomicity

• Atomicity – many actions like one; “all or nothing”
• In reality, actions take time!
– To get atomicity, to prevent multiple actions from

interfering with each other
– I.e., are Isolated

• Will return to Durability in 2 lectures
– E.g., how to recover a database after a crash into a state

where no partial transactions are present

Consistency

• Preservation of invariants
• Usually expressed in terms of constraints
– E.g., primary keys / foreign keys
– Triggers

• Example: no employee makes more than their
manager

• Requires ugly non-SQL syntax (e.g. PL/pgSQL)
• Often done in the application

Postgres PL/pgSQL Trigger Example
CREATE FUNCTION sal_check() RETURNS trigger AS sal_check
 DECLARE
 mgr_sal integer;
 BEGIN
 IF NEW.salary IS NOT NULL THEN
 SELECT INTO mgr_sal salary
 FROM emp
 JOIN manages
 ON NEW.eid = manages.eid
 AND emp.eid = manages.eid
 LIMIT 1;
 IF (mgr_sal < NEW.salary) THEN
 RAISE EXCEPTION 'employee cannot make more than manager’;
 END IF;
 END IF;
 RETURN NEW;
 END;
sal_check LANGUAGE plpgsql;
CREATE TRIGGER eid_sal BEFORE INSERT OR UPDATE ON emp
FOR EACH ROW EXECUTE FUNCTION sal_check();

NEW is the record being added

mgr_sal is a local variable
Query finds the salary of one
manager

Check salary (if no manager, mgr_sal is NULL)

Declare that we want to call sal_check
every time a record changes or is added to emp

How Can We Isolate Actions?

• Serialize execution: one transaction at a time
• Problems with this?
– No ability to use multiple processors
– Long running transactions starve others

• Goal: allow concurrent execution while
preserving serial equivalence

• Concurrency control algorithms do this

Serializability

• An ordering of actions in concurrent
transactions that is serially equivalent
T1 T2
RA RA
RB RB
WA WA
WB WB

T1 T2
RA
WA
 RA
 WA
RB
WB
 RB
 WB

RA: Read A
WA: Write A, may depend on anything read previously

A/B are “objects” – e.g., records, disk pages, etc

Assume arbitrary application logic between reads and
writes

Serially equivalent to T1 then T2

Serializability

• An ordering of actions in concurrent
transactions that is serially equivalent
T1 T2
RA RA
RB RB
WA WA
WB WB

T1 T2
RA
 RA
 WA
WA
RB
WB
 RB
 WB

RA: Read A
WA: Write A, may depend on anything read previously

A/B are “objects” – e.g., records, disk pages, etc

Assume arbitrary application logic between reads and
writes

Not serially equivalent – T2’s write to A is lost, couldn’t
occur in a serial schedule
 In T1-T2, T2 should see T1’s write to A
 In T2-T1, T1 should see T2’s write to A

Testing for Serializability

View
Serializability

Any schedule that is conflict serializable is view serializable, but not vice-versa

Conflict
Serializability

View Serializability
A particular ordering of instructions in a schedule S is view
equivalent to a serial ordering S' iff:

• Every value read in S is the same value that was read by the
same read in S'.

• The final write of every object is done by the same transaction
T in S and S’

• Less formally, all transactions in S “view” the same
values they view in S', and the final state after the
transactions run is the same.

View Serializability Example

Every value read in S is the same value that
was read by the same read in S'.

The final write of every object is done by the
same transaction T in S and S'

S S’
T1 T2 T1 T2
RA=A1 RA= A1
WAàA2 WAàA2
 RA = A2 RB = B1
 WAàA3 WBàB2
RB=B1 RA = A2
WBàB2 WAàA3
 RB=B2 RB = B2
 WBàB3 WBàB3

Same values
read in both
schedules

T2 does final
write in both
schedules

https://clicker.mit.edu/6.5830/
Is the following schedule

view serializable?

T1 T2

RA=A1

RA=A1

WA->A2

WB->B2

WB->B3

A)Yes
B) No

A particular ordering of instructions in a schedule S is view
equivalent to a serial ordering S' iff:
• Every value read in S is the same value that was read by the

same read in S'.
• The final write of every object is done by the same transaction

T in S and S’

View Serializability Limitations

• Must test against each possible serial schedule
to determine serial equivalence
– NP-Hard!

• No protocol to ensure view serializability as
transactions run

• Conflict serializability addresses both points

(For N concurrent transactions, there
are 2N possible serial schedules)

Conflicting Operations

• Two operations are said to conflict if:
– Both operations are on the same object
– At least one operation is a write
– E.g.,
• T1WA conflicts with T2RA, but
• T1RA does not conflict with T2RA

R W

R ✓ ❌

W ❌ ❌

T1
T2

Conflict Serializability

A schedule is conflict serializable if it is possible
to swap non-conflicting operations to derive a
serial schedule.
 Equivalently
For all pairs of conflicting operations {O1 in T1,
O2 in T2} either
• O1 always precedes O2, or
• O2 always precedes O1.

T1 ≺ T2 : “T1 precedes T2”

Example

T1 T2
RA
 RA
 WA
WA
RB
WB
 RB
 WB

T1 T2
RA
WA
 RA
 WA
RB
WB
 RB
 WB

For all pairs of conflicting operations {O1 in T1, O2 in T2} either
O1 always precedes O2, or
O2 always precedes O1.

T1 ≺ T2

T2 ≺ T1

Not conflict serializable!

T1 ≺ T2

T1 ≺ T2

Conflict serializable!

T1 T2
RA
WA
RB
WB
 RA
 WA
 RB
 WB

In conflict serializable schedule,
can reorder non-conflicting ops to
get serial schedule

O1
O2

Precedence Graph
Given transactions Ti and Tj,
Create an edge from TiàTj if:

• Ti reads/writes some A before Tj writes A
RATi≺ WATj or WATi≺ WATj
 or

• Ti writes some A before Tj reads A
WATi≺ RATj

If there are cycles in this graph, schedule is not conflict
serializable

Non-Serializable Example

T1 T2
RA
 RA
 WA
WA
RB
WB
 RB
 WB

T1
T2RAT1≺ WAT2

RAT2≺ WAT1

Cycle!

Create an edge from TiàTj if:

Ti reads/writes some A before Tj writes A, or
RATi≺ WATj or WATi≺ WATj

Ti writes some A before Tj reads A
WATi≺ RATj

Precedence Graph

Serializable Example

T1 T2
RA
WA
 RA
 WA
RB
WB
 RB
 WB

T1
T2RAT1≺ WAT2

No Cycles!

Create an edge from TiàTj if:

Ti reads/writes some A before Tj writes A, or
RATi≺ WATj or WATi≺ WATj

Ti writes some A before Tj reads A
WATi≺ RATj

Precedence Graph

WAT1≺ RAT2

WAT1≺ WAT2

…

Recap: 3 Ways to Test for Conflict
Serializabiliy

1. Check: For all pairs of conflicting
operations {O1 in T1, O2 in T2}
either
a. O1 always precedes O2, or
b. O2 always precedes O1.

2. Swap non-conflicting operations
to get serial schedule

3. Build precedence graph, check
for cycles

Clicker:
https://clicker.mit.edu/6.5830/

• Is this schedule conflict serializable?
T1 T2 T3

RA

RB

WA

RB

WB

WB

RA

WA

COMMIT COMMIT COMMIT

A)Yes
B) No

Study Break

• Is this schedule conflict serializable?
T1 T2 T3

RA

RB

WA

RB

WB

WB

RA

WA

COMMIT COMMIT COMMIT

T1

T2
T3

No!

https://clicker.mit.edu/6.5830/
T1 T2 T3

RA

WA

WA

WA

RB

WB

Is this schedule
A) neither view nor conflict serializable
B) conflict serializable but not view serializable
C) view serializable but not conflict serializable
D) conflict and view serializable

View vs Conflict Serializable
• Testing for view serializability is NP-Hard

– Have to consider all possible orderings
• Conflict serializability used in practice

– Not because of NP-Hardness
– Because we have a way to enforce it as transactions run

• Example of schedule that is view serializable but not conflict serializable:

T1 T2 T3
RA
 WA
WA
 WA
RB
WB

Equivalent to T1, T2, T3
Conflict serializability does not permit this
Only happens with blind writes

T1
T2

T3

RAT1≺ WAT2

WAT2≺ WAT1
RA

T1 ≺ W
A

T3
W

A
T1 ≺ W

A
T3

Cycle!

Blind Writes

View vs Conflict Serializable

View
Serializability

Any schedule that is conflict serializable is view serializable, but not vice-versa

Conflict
Serializability

Implementing Conflict Serializability
• Several different protocols
• Today: Two Phase Locking (2PL)
• Basic idea:

– Acquire a shared (S) lock before each read of
an object

– Acquire an exclusive (X) lock before each write
of an object

• Several transactions can hold an S lock
• Only one transaction can hold an X lock
• If a transaction cannot acquire a lock it waits

(“blocks”)

Lock Compatibility Table

Conflicting operations (from def. of conflict serializability) are not
compatible with each other

R W

R ✓ ❌

W ❌ ❌

T1
T2

S X

S ✓ ❌

X ❌ ❌

T1
T2

When to Release Locks

• After each op completes?
• Or after xaction is done with

variable?
• No! Example of problem à
• T2 “sneaks in” and updates

A and B before T1 updates B

T1 T2
Xlock A
RA
WA
Rel A
 Xlock A
 RA
 WA
 Xlock B
 RB
 WB
 Rel A,B
Xlock B
RB
WB
Rel B

This schedule is not serializable

Solution: Two Phase Locking

• A transaction cannot release any locks until it
has acquired all of its locks

Example, Revisited
• Rule: A transaction

cannot release any
locks until it has
acquired all of its
locks

T1 T2
Xlock A
RA
WA
Rel A
 Xlock A
 RA
 WA
 Xlock B
 RB
 WB
 Rel A,B
Xlock B
RB
WB
Rel B

This schedule is not serializable

Not allowed à

Example, Revisited
• Rule: A transaction

cannot release any
locks until it has
acquired all of its
locks

• Serial schedule
defined by lock
points
– Where they acquire

last lock

T1 T2
Xlock A
RA
WA
Xlock B
Rel A
 Xlock A
 RA
 WA
RB
WB
Rel B
 Xlock B
 RB
 WB
 Rel A,B

This schedule *is* serializable

Acquired all à
locks so
can release

ß Lock point

Lock point à

Correctness Intuition

• Once a transaction T reached its lock point:
– T’s place in serial order is set
– Any transactions that haven't acquired all their

locks can’t take any conflicting actions until after T
releases locks
• Ordered later

– Any transactions which already have all their locks
must have completed their conflicting actions
(released their locks) before T can proceed
• Ordered earlier

Two Phase Locking (2PL) Protocol

• Before every read, acquire a shared lock

• Before every write, acquire an exclusive lock
(or "upgrade") a shared to an exclusive lock

• Release locks only after last lock has been
acquired, and ops on that object are finished

Can you think of any potential
problems with 2PL?

Refining 2PL

• Problems:
– Deadlocks
– Cascading Aborts

– How do we know when we are done with all
operations on an object?

Deadlocks

• Possible for Ti to hold a lock Tj needs, and vice
versa

T1 T2
RA
WA
 RB
 WB
RB
WB
 RA
 WA

T1 waits for T2 à

ß T2 waits for T1

T1

T2

Waits-for graph
Cycle à Deadlock

Complex Deadlocks Are Possible
T1 T2 T3
RA
WA
 RC
 RB
 WB
 RA
 WA
RB
WB
 RC
 WC

T1 waits for T2 à

ß T2 waits for T3

ß T3 waits for T1

T1

T2

Waits-for graph
Cycle à Deadlock

T3

Resolving Deadlock
• Solution: abort one of the transactions
– Recall: users can abort too

T1 T2 T3
RA
WA
 RC
 RB
 WB
 RA
 WA
RB
WB
 RC
 WC

T1 waits for T2 à

ß T2 waits for T3

ß T3 waits for T1

T1

T2

Waits-for graph
Cycle à Deadlock

T3

Equivalent to T2 - T1

Cascading Aborts
• Problem: if T1 aborts, and T2 read something

T1 wrote, T2 also needs to abort
T1 T2
Xlock A
RA
WA
Xlock B
Rel A
 Xlock A
 RA
 WA
RB
WB
Rel B
 Xlock B
 RB
 WB
 Rel A,B

If T1 aborts here à
T2 also needs to abort,
It reads T1’s write of A

Can you think of a 2PL variant which
neither requires deadlock detection nor

has cascading aborts?

Strict Two-Phase Locking

• Can avoid cascading aborts by holding
exclusive locks until end of transaction

• Ensures that transactions never read other
transaction’s uncommitted data

Strict Two-Phase Locking Protocol

• Before every read, acquire a shared lock

• Before every write, acquire an exclusive lock (or "upgrade") a
shared to an exclusive lock

• Release locks only after last lock has been acquired, and ops on that
object are finished

• Release shared locks only after last lock has been acquired, and ops
on that object are finished

• Release exclusive locks only after the transaction commits

• Ensures cascadeless-ness

Problem: When is it OK to release?

• How does DBMS know a transaction no longer
needs a lock?

• Difficult, since transactions can be issued
interactively

• In practice, this means that all locks held til
end of transaction

• This is called rigorous two-phase locking

Rigorous Two-Phase Locking
Protocol

• Before every read, acquire a shared lock

• Before every write, acquire an exclusive lock (or
"upgrade") a shared to an exclusive lock

• Release (all) locks only after the transaction commits

• Ensures cascadeless-ness, and
• Commit order = serialization order

Can you avoid deadlock detection?

Clicker:
https://clicker.mit.edu/6.5830/

UPDATE professors
SET status = ‘teaching'
WHERE name = 'Tim'
AND NOT EXISTS
 SELECT 1 FROM employees WHERE

status = ‘teaching’ AND name= ' Sam'

Can you create a serializable interleaved
schedule?

UPDATE professors
SET status = ‘teaching'
WHERE name = ' Sam'
AND NOT EXISTS
 SELECT 1 FROM employees WHERE

status = ‘teaching’ AND name= ‘Tim'

Clicker:
https://clicker.mit.edu/6.5830/

UPDATE professors
SET status = ‘teaching'
WHERE name = 'Tim'
AND NOT EXISTS
 SELECT 1 FROM employees WHERE

status = ‘teaching’ AND name= ' Sam'

S
T1 T2

Rs=s1
 Rt=t1
Wtàt1/t2
 Wsàs1/s2

UPDATE professors
SET status = ‘teaching'
WHERE name = ' Sam'
AND NOT EXISTS
 SELECT 1 FROM employees WHERE

status = ‘teaching’ AND name= ‘Tim'

Clicker:
https://clicker.mit.edu/6.5830/

UPDATE professors
SET status = ‘teaching'
WHERE name = 'Tim'
AND NOT EXISTS
 SELECT 1 FROM employees WHERE

status = ‘teaching’ AND name= ' Sam'

S
T1 T2

Rs=s1
 Rt=t1
Wtàt1/t2
 Wsàs1/s2

UPDATE professors
SET status = ‘teaching'
WHERE name = ' Sam'
AND NOT EXISTS
 SELECT 1 FROM employees WHERE

status = ‘teaching’ AND name= ‘Tim'

Is this schedule
A) neither view nor conflict

serializable
B) conflict serializable but not view

serializable
C) view serializable but not conflict

serializable
D) conflict and view serializable

Next 1.5 Lectures

• Optimistic concurrency control: Another
protocol to achieve conflict serializability

• Nuances that arise with locking granularity

