
6.5830 Lecture 14

Advanced Cardinality Estimation
October 30, 2023

Logistics

• 6.5830 Project meetings
• Lab3 due this Friday
• PS3 release this Wednesday due Nov 27
– Treat as quiz 2 practice

Recap: Query optimization

Query Optimizer:
• Rewrite rules

– Expert-designed rules

• Plan enumeration
– Selinger DP

• Cardinality estimator
– Crucial for join ordering

and operator selection
– Arguably the most

challenging problem

• Cost model
– CPU/IO cost calculation

Query
Optimizer

Rewrite
rule

Query

Physical
Query Plan

Plan
Enum.

Card
Est.

Cost
Est.

Execution
Engine

Example (PS2): why crucial

⨝ c.key=s.key

⨝ n.key=c.key

c n

s

𝛔150K

25

1

6K 10K

2.4M

SELECT * FROM nation n,
 customer c, supplier s
WHERE n.nationkey = c.nationkey
 AND s.nationkey = c.nationkey
 AND n.name = ‘GERMANY’

Index vs seq scan?

Join algo?

⨝ c.key=n.key

⨝ c.key=s.key

c s

150K

60M 1

n

2.4M

10K

Which join order is better?

Accurate cardinality estimation is crucial and very challenging.

𝛔

25

What join algo to choose?
What access method to choose?
(Need to consider cardinality
estimation and cost information)

Overview: Why so challenging

Single column -> very easy.

Multiple columns -> harder
because of correlation.

Multiple tables (join)-> Much
much harder because
distribution and correlation
changes after join.

Table R

R.X R.Y

R.Z

Table S

S.X S.Y

S.Z

Table T
T.Y T.Z

T.X

⨝

⨝

⨝

Overview: Why so challenging

Single column -> very easy.

Multiple columns -> harder
because of correlation.

Multiple tables (join)-> Much
much harder because
distribution and correlation
changes after join.

Table R

R.X R.Y

R.Z

Table S

S.X S.Y

S.Z

Table T
T.Y T.Z

T.X

⨝

⨝

⨝

Overview: Why so challenging

Single column -> very easy.

Multiple columns -> harder
because of correlation.

Multiple tables (join)-> Much
much harder because
distribution and correlation
changes after join.

Table R

R.X R.Y

R.Z

Table S

S.X S.Y

S.Z

Table T

T.Y T.Z

T.X

⨝

⨝

⨝

Roadmap

• Estimating the cardinality on single table
– Histograms (used by PostgreSQL)
– Handling correlated columns
– Special filter types and estimation methods

• Estimating cardinality of joins
– Uniformity assumption
– Joining histograms
– Recent advances

Roadmap

• Estimating the cardinality on single table
– Histograms (used by PostgreSQL)
– Handling correlated columns
– Special filter types and estimation methods

• Estimating cardinality of joins
– Uniformity assumption
– Joining histograms
– Recent advances

What are we estimating?

• Card(X<5) = 5/9 * 9 = 5

X

1

2

2

3

4

8

8

10

15

Selectivity
Pr(X<5)

Table size {R}
Cardinality

Filter
predicateY

10

6

2

31

44

-5

-12

-82

97

…

…

…

Table R

Isn’t this just probability distribution P(X) of X?

We denote the estimation of Card(X) as ^Card(X)

• Histograms can approximate any distribution (pdf) for
a single attribute.

• Easy to build (ANALYZE): scan (sample of) one table.

Equal-width histograms

Value of X

De
ns

ity
 (P

DF
)

0 5k 10k 15k 20k 25k 30k 35k 40k …. 485k

…

Assume within a bin,
values are uniformly
distributed

0.61

0.09
0.05 …

Equal-width histograms

What is the estimation of ^Card(X<10K)?
Is this accurate?

We denote the estimation of Card(X) as ^Card(X)

What about ^Card(X<23K)?

De
ns

ity

^Card(X<10K) = Card(X<10K)
(0.61 + 0.09)*{R}

Equal-width histograms
https://clicker.mit.edu/6.5830/

What is the estimation ^Card(X<23K)?
(a) 0.786 * {R} (b) 0.806 * {R}
(c) 0.798 * {R} (d) 0.794 * {R}

We denote the estimation of Card(X) as ^Card(X)

De
ns

ity

Assume within a bin,
values are uniformly
distributed

Equal-width histograms

^Card(X<23K) = (0.61+0.09+0.05+0.036+0.02*3/5)*{R}

Assume:
values are
uniformly
distributed
within a bin

Is this accurate?

We denote the estimation of Card(X) as ^Card(X)

De
ns

ity

At most off by +- 0.02 *{R}
What about ^Card(X=0)? Is this accurate?

Equal-width histograms

Reality: non-uniform distribution within a bin.
^Card(X=0) = 0.61*1/5000*{R}

50 % of this bin has value
X = 0 (30.5% of all table)
E.g., people may use 0 for
missing value

What can we do?
• Equal-depth histograms
• Most common values

(MCV)

Not balanced
This bin really doesn’t
make a difference in
terms of accuracy

We denote the estimation of Card(X) as ^Card(X)

De
ns

ity

Card(X=0) = 0.61*0.5*{R}
2500x under-estimate!!!!

Equal-depth histograms

Value Bins
0 0 00 240K – 485K1-200 … …12K-23k 200K-240K

… …

Bin width is different but every bin has the same density.
More efficient and more accurate estimation.
Slightly more expensive to build and maintain (e.g. keep
balance during data update) than equal-width histogram

More elegant/efficient to merge these same bins

De
ns
ity

Histograms + Most Common Values
(MCV)

Value Bins
240K-485K12k-23k… … 200K-240K

… …

1-300 300-2k …

Value Density

0 0.305

2 0.05

8 0.008

… …

340 0.0002

0.004

0.008

0.0

^Card(X<10) = (0.305 + 0.05 + 0.008 + 0.004*10/300)*{R}

First check the MCV table Then check the histograms

Increases accuracy, especially for point filter estimation.
Relaxes the assumption that values are uniformly distributed within each bin.
Cardinality estimation of a filter on a single-column is very accurate and efficient.

MCV Table

De
ns

ity

Stats in Postgres

Default: equal-depth histograms + MCVs

11 bins

47 MCVs

Number of bins and MCVs are tunable parameters of Postgres

Stats in Postgres

Recap PS2: why is the no estimation error for filter ‘route_id > 10’?

0 bin (no histogram needed)

18 MCVs

No need for histogram. Perfect stats using MCVs unless data changes.

Postgres automatically “ANALYZE” the table when it is first loaded and
whenever changed, unless manually turned off.

What about multi-column filters?

^Card(X<5 AND Y<0)
= P(X<5) * P(Y<0) * {R}
= 5/9 * 3/9 * {R}

Filter on R: X < 5 AND Y < 0
Attribute independence assumptionX

1

2

2

3

4

8

8

10

15

Y

10

6

2

31

44

-5

-12

-82

97

…

…

…

Table R

Card(X<5 AND Y<0) = 0

Large estimation error because X and Y
are not independent. This error grows
exponentially w.r.t. number of columns.

Estimated

True

We denote the estimation of Card(X) as ^Card(X)

1-D Histogram summary

• Histograms are the most widely used cardinality
estimation method, used in Postgres and various
commercial DBMSes.

• Pros
– Fast to build
– Negligible memory and inference overhead

• O(nbins) linear memory and inference time w.r.t. num of bins
– Easy to update with new data

• Cons
– Inaccurate for filters involving multiple columns
– Inaccurate for join size estimation (discuss later)

Roadmap

• Estimating the cardinality on single table
– Histograms (used by PostgreSQL)
– Handling correlated columns
– Special filter types and estimation methods

• Estimating cardinality of joins
– Uniformity assumption
– Joining histograms
– Recent advances

Multi-dimensional histograms

Bin the value domain of
two attributes.

Multi-dimensional MCV
Value of X Value of Y Density

0 0 0.05

0 1 0.04

0 -1 0.03

… …

2 -3.5 0.0001

Multi-dimensional histograms
https://clicker.mit.edu/6.5830/

Table R has attributes X, Z, Y, we want to estimate the
cardinality of filter X = 0 and Y < 0 and Z > 5.

You build a 2d histogram on X and Z to estimate ^Card(X = 0
and Z > 5) = 0.2 * {R} and a 1d histogram on Y to estimation
^Card(Y < 0) = 0.2 * {R}. Assume that the true card is 0.16 *
{R}. How many times did you under/over estimate by?
(a) Underestimate by 2x (b) Overestimate by 2x
(c) Underestimate by 4x (d) Overestimate by 4x

We denote the estimation of Card(X) as ^Card(X)

Multi-dimensional histograms

X Y

Z

Table R with three attribute X, Y, Z
Filter on R with X = 0 and Y < 0 and Z > 5

X Y

Z

X Y

Z

P(X)*P(Y)*P(Z)
Independence Assumption
O(nbins)

P(X, Z)*P(Y)
Some Independence Assumption
O(nbins2)

P(X, Z, Y)
No assumption O(nbins3)
May not be affordable

Strong assumption No assumption

Multi-dimensional histograms

• Many DBMS supports Multi-dimensional
histograms (e.g., PostgreSQL) but not by default

• Memory and inference overhead is O(nbinsd)
– d is the number of dimensions (columns)

• Generally unaffordable when d is large (e.g. d >
2) even with modern histogram compression
techniques

• What about filters on more (>2) attributes that
are correlated? → still very inaccurate.

Probabilistic Graphical Models

X Y

Z

Table R with three attribute X, Y, Z
Filter on R with X = 0 and Y < 0 and Z > 5

X Y

Z

X Y

Z

P(X)*P(Y)*P(Z)
Independence Assumption
O(nbins)

P(X|Z)*P(Y|Z)*P(Z)
Conditional Independence
Assumption
O(nbins2)

P(X, Z, Y)
No assumption
O(nbins3)
May not be affordable2D histograms

Strong assumption No assumption

Won’t be on quiz

Graphical Models: rail_ridership

total_ons

average_ons

season total_offs

average_offs

average_flows

station_ids

time_period

O(8 × 1002)

O(1008)
v/s

BayesCard by Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, Jingren Zhou

Probabilistic Graphical Models

Dependency graph (tree) of rail_ridership

One 1-D histogram for each root
(e.g. P(station_ids))
 One 2-D histogram for each edge
(e.g. P(average_ons|total_ons))

Bayesian networks
Conditional independence
assumption:
Given a dependency graph, an
attribute is conditionally
independent of all other
attributes given its parent(s).

Won’t be on quiz

Assume:
average_ons =
total_ons/constant

Graphical Models: rail_ridership

total_ons

average_ons

season total_offs

average_offs

average_flows

station_ids

time_period

O(8 × 1002)

O(1008)
v/s

BayesCard by Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, Jingren Zhou

Probabilistic Graphical Models

Dependency graph (tree) of rail_ridership

• PGMs provide a compact and
accurate approach to build
multiple 2-D histograms and use
them for cardinality estimation.

• Each node will have at most one
parent in a tree. O(nbins2)
memory/inference complexity

• Tree-structured dependencies
can preserve most correlations
for many real-world data to
provide accurate estimation on
single table.

• A few DBMSes use PGM, such as
ByConity from ByteDance

Chow, C. K.; Liu, C.N. (1968), "Approximating discrete probability distributions with dependence trees”
Lise Getoor and Daphne Taskar, Ben andKoller. (2001). “Selectivity estimation using probabilistic models”
Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, Jingren Zhou (2020), “Bayescard: Revitilizing bayesian frameworks for cardinality estimation”

Won’t be on quiz

Roadmap

• Estimating the cardinality on single table
– Histograms (used by PostgreSQL)
– Handling correlated columns
– Special filter types and estimation methods

• Estimating cardinality of joins
– Uniformity assumption
– Joining histograms
– Recent advances

Complex filter predicates

• String pattern matching
– SELECT COUNT(*) from R WHERE X LIKE ‘%MIT%’;

• Complex mathematical expressions
– SELECT COUNT(*) from R WHERE SQRT(X*Y) – Z*3 > 0;

• User Defined Functions
– SELECT COUNT(*) from R WHERE my_hash(X) = 0;

Complex filter predicates

• Cannot use histograms to estimate them
• Most DBMSes just assume some constant

selectivity (e.g. 7%) for these predicates.
– Can still use histograms on other predicates

• Sampling as cardinality estimation
– Keep a sample (e.g. 1%) of R in memory
– Run the filter on this sample
– Pros: works for any filters
– Cons: very expensive / or not accurate

Roadmap

• Estimating the cardinality on single table
– Histograms (used by PostgreSQL)
– Handling correlated columns
– Special filter types and estimation methods

• Estimating cardinality of joins
– Uniformity assumption
– Joining histograms
– Recent advances

Estimating Join Cardinality

• Arguably the most crucial and most challenging part
of query optimization
– Good plans may execute in couple seconds while bad

plans may execute for weeks.
– Each join pattern imposes a unique data distribution and

attribute correlation

• Objective for a desirable method:
– Accurate
– Lightweight (fast build time, low memory overhead)
– Fast (low inference overhead)

Uniformity assumption

Assume all join keys are uniformly distributed
e.g. {R} = 500, NDV(R.X) = 100, so each value repeats
exactly 5 times (number of distinct values)

R.X value

Fr
eq

ue
nc

y

00
20

40
60

80

20 40 60 80 100

Uniformity Assumption

00
20

40
60

80

20 40 60 80 100
R.X value

Frequency =
{R.X}/NDV(R.X)

Fr
eq

ue
nc

y

Uniformity assumption

{R} = 500, NDV(R.X) = 100, so each value repeats exactly 5 times
{S} = 1000, NDV(S.Y) = 500, so each value repeats 2 times

^Card(R.X ⨝ S.Y) = {R} * {S} / max(NDV(R.X), NDV(S.Y)) (Lecture 5)

^Card(R.X ⨝ S.Y) = min(NDV(R.X) , NDV(S.Y)) * {R.X}/NDV(R.X) * {S.Y}/NDV(S.Y)

Num. of distinct values in join result Each value will have this many repeats

At most how many unique values can there be in the result
of the inner join R.X ⨝ S.Y?
How many times can a value repeat in the result of the
inner join R.X ⨝ S.Y?

Min(100, 500) = 100

5 * 2 = 10
^Card(R.X ⨝ S.Y)? 100 * 10 = 1000

https://clicker.mit.edu/6.5830/
Uniformity assumption

Two tables R with {R} = 500, {S} = 1000, NDV(R.X) = 100,
NDV(S.Y) = 500. Filter on R.A < 0 has selectivity of 20%. Filter on
S.B > 0 has selectivity of 10%.

• Q1: What is ^Card(R.X ⨝ S.Y AND R.A < 0 AND S.B > 0), under uniformity

assumption?
• Q2: Suppose the actual cardinality is larger than your estimation, what is

the maximumly possible estimation error? (in terms of Card/^Card)
– (a) 1-10x underestimation
– (b) 10-100x underestimation
– (c) 100-1000x underestimation
– (d) more than 1000x underestimation

We denote the estimation of Card(X) as ^Card(X)

Uniformity assumption

• Q1: What is ^Card(R.X ⨝ S.Y AND R.A < 0 AND S.B > 0)?
– 1000 x 0.1 x 0.2 = 20

• Q2: Suppose the actual cardinality is larger than your
estimation, what is the maximum estimation error?
– After R.A < 0, R will have 100 rows; after S.B > 0, S will have 100 rows
– If distribution is highly skewed after the filter, max(card) = 100 * 100 =

10000
– 500x estimation error

We denote the estimation of Card(X) as ^Card(X)

Uniformity assumption

• Most DBMSes use this assumption
• Pros: lightweight, fast
– #distinct can be read-off from index (if available)
– Negligible memory/computation overhead

• Cons: very inaccurate
– Real-world data are highly-skewed
– Error will accumulate exponentially w.r.t. number

of tables

Roadmap

• Estimating the cardinality on single table
– Histograms (used by PostgreSQL)
– Handling correlated columns
– Special filter types and estimation methods

• Estimating cardinality of joins
– Uniformity assumption
– Joining histograms
– Recent advances

Joining Histograms

R.X value

De
ns

ity

00
20

40
60

80

20 40 60 80 100

Build histogram on R.X

00
20

40
60

80

20 40 60 80 100
S.Y value

De
ns

ity

Apply the same bins on S.Y

Bin
No.

bin Density
of R.X

Density
of S.Y

Density
of join

0 0-10 80 30 240

1 10-20 50 40 200

2 20-30 40 60 240

3 30-40 30 40 120

… … … … …

10 90-100 2 10 2

- All - - 887

Uniformity assumption only in each bin
80 * 30 / max(10, 10) = 240

Sum up all bins

Relaxed version of uniformity assumption

Yannis Ioannidis (2003), “The History of Histograms (abridged)”

Joining Histograms

• A few DBMSes use this approach (e.g., Oracle)
• More expensive but more accurate than join

uniformity assumption.
• Drawbacks
– Cannot account for correlation between filtered

attributes and join keys.
– The same bins must be applied to the join keys
• A set of bins that works well on R.X may not be optimal for S.Y

Roadmap

• Estimating the cardinality on single table
– Histograms (used by PostgreSQL)
– Handling correlated columns
– Special filter types and estimation methods

• Estimating cardinality of joins
– Uniformity assumption
– Joining histograms
– Recent advances (optional content)

Recent advances in cardinality
estimation

• Very active ongoing field of research
– ~20 papers in SIGMOD/VLDB per year in the last 5 years.

• Two directions
– Data-driven: build stats by analyzing the data

• Everything you have seen so far
• Use sophisticated statistical/ML models to understand distribution

– Query-driven: do not analyze data, analyze query
• Map query to its actual cardinality from execution feedback
• Featurize the query and use ML/DL-based regression models

Won’t be on quiz

Data-driven: Denormalize
• Join tables together (denormalize) and treat the

denormalized result as a single table

• Very accurate but very heavy-weight and slow
– There can be exponential number of possible joins in a database with

n tables
– Need to understand the data distribution for each one

R.X R.A

1 12

2 62

2 -1

3 -7

4 99

… …

S.Y S.B

1 0.2

1 1.4

2 -9.1

2 -1.1

3 8.3

… …

⨝

R.X R.A S.B

1 12 0.2

1 12 1.4

2 62 -9.1

2 62 -1.1

2 -1 -9.1

… … …

Can accurately
answer any query
such as
(R.X ⨝ S.Y AND R.A
< 0 AND S.B > 0)

Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, Ion Stoica (2020), “NeuroCard: One Cardinality Estimator for All Tables”
Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, Carsten Binnig (2019), “DeepDB: Learn from Data, not from Queries!”
Rong Zhu*, Ziniu Wu*, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian, Jingren Zhou, Bin Cui (2020), “FLAT: Fast, Lightweight and Accurate Method for Cardinality Estimation”
Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, Jingren Zhou (2020), “Bayescard: Revitilizing bayesian frameworks for cardinality estimation”

Won’t be on quiz

Data-driven: FactorJoin

• Build a factor graph to generalize the joining histograms
approach to accurately estimate any join with filters.

• Only need to understand the data distribution in each single
table, combining single-table probabilities into probabilities
on the denormalized (joined) tables using factor graph.

Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, Samuel Madden (2023), “FactorJoin: A New Cardinality Estimation Framework for Join Queries”

V1 V2 V3

R S KT

Factor graph rep. of a join graph

Join keys

Single table
distributions
(e.g. PGM in term
of histograms)

Won’t be on quiz

Query-driven

• Many DBMSes have execution
history (with cardinality info)

• Featurize the queries (SQL)
• Train deep neural network to

map query to its cardinality

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, Alfons Kemper (2018), “Learned
Cardinalities: Estimating Correlated Joins with Deep Learning”
Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong Li (2021), “Fauce: fast and accurate deep ensembles
with uncertainty for cardinality estimation”
Ji Sun, Guoliang Li (2019), “An end-to-end learning-based cost estimator”

Won’t be on quiz

Query-driven

• Accuracy varies
– Can be very accurate
– Can be inaccurate if workload changes (training and testing queries

mismatch) or data updates
• Can handle complex filter

– Special query featurization for LIKE or user-defined functions

• Deep learning model can be expensive
– Requires a large amount of training data
– Large memory/computation overhead
– Requires special hardware (e.g. gpu)

Won’t be on quiz

Summary

• Cardinality estimation is crucial and
challenging
– Simplified assumptions make this problem

tractable and practical in DBMS, but can have
huge estimation errors.

– Advanced approaches makes it
very accurate but more
expensive to create/use.

– Numerous ongoing research
to find the sweet spot.

