
Architectural Capriccio with Jephthah and his Daughter, Dirck van Dalen, 1633

Lecture 15: Parallel and Distributed Databases

RECAP: OCC

• Divide transaction execution in 3 phases

– Read: transaction executes on DB, stores local state

– Validate: transaction checks if it can commit

– Write: transaction writes state to DB

RECAP: Validation Rules

When Tj completes its read phase, require that for all Ti < Tj, one of the following

conditions must be true for validation to succeed (Tj to commit):

1) Ti completes its write phase before Tj starts its read phase

2) W(Ti) does not intersect R(Tj), and Ti completes its write phase before Tj

starts its write phase.

3) W(Ti) does not intersect R(Tj) or W(Tj), and Ti completes its read phase

before Tj completes its read phase.

4) W(Ti) does not intersect R(Tj) or W(Tj), and W(Tj) does not intersect R(Ti)

[no conflicts]

These rules will ensure serializability, with Tj being ordered after Ti with respect

to conflicts

Recap: OCC Validation

Restating previous rules, aborts required if:

1) W(Ti) ∩ R(Tj) ≠ { }, and Ti does not finish writing before Tj starts, Tj
must abort, because Tj may have only seen some of what Ti wrote

or

2) W(Ti) ∩ (W(Tj) U R(Tj)) ≠ { }, and Tj overlaps with Ti validation or write
phase, Tj must abort because it needs its writes to all appear after Ti’s
writes

In OCC when do you assign the Transaction Identifier?

a) At the beginning of the trx,

b) At the start of the validation phase

c) At the start of the write phase

d) At the end of the write phase

https://clicker.mit.edu/6.8530/

• Goal: assign transaction ids T1, … Tn, such that this is the
serial equivalent order

• When should we assign transaction identifiers?

• At start of read phase?

– No! Would be “pessimistic” – don’t want to pre-assign
the transaction order before transactions finish running

– Long running transactions would have to commit before
later short transactions

• Assign at end of read phase, just before validation starts

https://clicker.mit.edu/6.5830/

Recap: Snapshot Isolation

• When a TA starts it receives a timestamp, T.

• All reads are carried out as of the DB version of T.

▪ Need to keep historic versions of all objects!!!

• All writes are carried out in a separate buffer.

▪ Writes only become visible after a commit.

• When TA commits, DBMS checks for conflicts

▪ Abort TA1 with timestamp T1 if exists TA2 such that

o TA2 committed after T1 and before TA1

o TA1 and TA2 updated the same object

Assume a system that manages holidays for hospital staff.

The system must ensure that always one chief doctor is on duty and uses the

following transaction for it:

https://clicker.mit.edu/6.8530/

BEGIN TRANSACTION;

 IF EXISTS(SELECT * FROM staff

 WHERE title=‘chief’

 AND vacation = false

 and name <> @user) THEN

 UPDATE staff SET vacation = true

 WHERE name = @user

 END IF;

COMMIT TRANSACTION;

What consistency guarantees are needed to

ensure that the invariant is always guaranteed

(select all that apply):

(A) READ UNCOMMITTED

(B) READ COMMITTED

(C) REPEATABLE READ

(D) SNAPSHOT ISOLATION

(E) SERIALIZABILITYHowever, the system removes the vacation

status by simply executing:
UPDATE staff SET vacation = false

 WHERE name = @user You can assume that there are no changes for staff members

• Observation: Snapshot isolation does not prevent Write-Read conflicts,

since it doesn’t check whether it read something another transaction

wrote

• This leads to so-called write-skew, i.e.:

T1 T2

 RX

 RY

 WY

 WX

• Neither transaction saw the other’s write; this would not be permitted

under serializability

Architectural Capriccio with Jephthah and his Daughter, Dirck van Dalen, 1633

Parallel and Distributed Databases

Parallel & Distributed DBs Overview

• Parallel DBs: how to get multiple processors/machines to execute

different parts of a SQL query

▪ Especially relevant for big, slow running queries

• Distributed DBs: what happens when these machines are physically

disjoint / fail independently

▪ Especially relevant for transaction processing

Today!

Parallel DB Goal

• SQL, but faster by running on multiple processors

• What do we mean by faster?

𝑠𝑝𝑒𝑒𝑑 𝑢𝑝 =
𝑜𝑙𝑑 𝑡𝑖𝑚𝑒

𝑛𝑒𝑤 𝑡𝑖𝑚𝑒
 on same problem, with N times more hardware

𝑠𝑐𝑎𝑙𝑒 𝑢𝑝 =
1𝑥 𝑙𝑎𝑟𝑔𝑒𝑟 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑜𝑛 1𝑥 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒

𝑁𝑥 𝑙𝑎𝑟𝑔𝑒𝑟 𝑝𝑟𝑜𝑏𝑒𝑙𝑚 𝑜𝑛 𝑁𝑥 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒

• Not necessarily the same: smaller problem may be harder to parallelize

DB Specific Metrics

• Transaction speedup: fixed set of txns, with 1 vs N machines

• Query speedup: fixed sized DB, with 1 vs N machines

• Transaction scaleup: N times as many txns for N machines

• Query scaleup : N times as big a query for N machines

Speedup Goal

• Linear?

Bad

Typical

GoodPossible?

P
er

fo
rm

an
ce

 (e
.g

.,
 T

P
S,

 o
r

se
co

n
d

s)

Number of parallel units

Barriers to Linear Scaling

What are some barriers in analytics and transactional workloads?

• Startup times

▪ e.g., may take time to launch each parallel executor

• Interference

▪ processors depend on some shared resource

▪ E.g., input or output queue, or other data item

• Skew

▪ workload not of equal size on each processor

Properties of Parallelizable Workloads

• Provide linear speedup

• Usually can be decomposed into small units that can be executed

independently

▪ "embarrassingly parallel"

• As we will see, relational model generally provides this

Parallel embarrassment

Parallel Architectures

• Several different ways we might parallelize databases

• Multiple cores?

• Multiple machines?

Types of
Parallelism –
Shared Everything

• Conventional multicore computer

• Multiple threads for execution

• Each core can access any record

• Difficult to scale beyond a few cores

• Not fault tolerant

CPU
Core 1

CPU
Core n…

Bus

Memory

Disk

Types of
Parallelism –
Shared Disk

• Several machines

• Each can access any record on disk

• Requires coordination to ensure writes
to disk are done safely

• Relies on reliable disk array for fault
tolerance

• Popularized by Oracle; reborn in the
cloud era (more in a bit)

CPU
Core 1

CPU
Core n

…Bus

Memory

Disk Array

Bus

Memory

Types of
Parallelism –
Shared Nothing

• Several machines

• Data partitioned across machines
▪ Each machine responsible for processing &

modifying its data

• Scales very well
▪ Easy to add new machines & partitions

• Fault tolerance via replication
CPU

Core 1
CPU

Core n

…
Bus

Memory

Disk 1

Bus

Memory

Disk n

High speed interconnect (e.g., 10GB Ethernet, Infiniband, …)

Types of Parallelism –
Shared Nothing on
Distributed File
System

• Decouples scaling of storage from
scaling of processing

• Storage layer implements its own
fault tolerance

• Logically data is still partitioned
and operated on by different
processors

• Has become common with rise of
cloud computing

▪ E.g., SnowFlake, MapReduce, …

CPU
Core 1

CPU
Core n

…Bus

Memory

Bus

Memory

Distributed File System (E.g., HDFS, S3)

Disk 1 Disk m…
Part 1 Part i Part j Part n… …

Matthias Brantner, Daniela Florescu, David Graf, Donald
Kossmann, Tim Kraska: Building a Database on S3, SIGMOD’08

Tradeoffs Between Parallel Architectures

Pros Cons

Shared Memory Easy to build Performance / scalability

No changes to concurrency control /

recovery

Poor fault tolerance

Shared Disk Better scalability Complex cache coherency

Better fault tolerance Poor scalability

Relies on expensive disk array

Shared Nothing (partitioned data) Cost New concurrency control/recovery

Scalability New executor

Fault tolerance

Name pros and cons

Tradeoffs Between Parallel Architectures

Pros Cons

Shared Memory Easy to build Performance / scalability

No changes to concurrency control /

recovery

Poor fault tolerance

Shared Disk Better scalability Complex cache coherency

Better fault tolerance Poor scalability

Relies on expensive disk array

Shared Nothing (partitioned data) Cost New concurrency control/recovery

Scalability New executor

Fault tolerance

Parallel Query Processing

• Three main ways to parallelize

1. Run multiple queries, each on a different thread

2. Run operators in different threads (“pipeline”)

3. Partition data, process each partition in a different processor

A filter sort

Processor 1 Processor 2

Processor 1

A1 filter sortProcessor 2

A2 filter sort

merge

Runs on 1 of
the processors

Pipelined Parallelism

• Only works when each pipeline stage is about the same speed

• Limited parallelism as most pipelines are short

• Inputs to stage i+1 depend on stage i

• If stage i blocks (i.e., sorts), breaks pipeline

• As a result, partitioned parallelism is the primary way database

systems scale

A filter sort

Processor 1 Processor 2

Partitioning Strategies

• Random / Round Robin

▪ Evenly distributes data (no skew)

▪ Requires us to repartition for joins

• Range partitioning

▪ Allows us to perform joins without repartitioning, when tables are partitioned

on join attributes

▪ Subject to skew

• Hash partitioning

▪ Allows us to perform joins without repartitioning, when tables are partitioned

on join attributes

▪ Only subject to skew when there are many duplicate values

Round Robin Partitioning

Partition 1

Partition 2

Partition n

…

Table

Advantages:

Each partition has the

same number of

records

Disadvantage:

No ability to push

down predicates to

filter out some

partitions

Range Partitioning

Table

Attribute A Partition 1

A < 10

Partition 2

10 < A < 17

…

Partition n

…

98 < A < 109

Advantages:

Easy to push down

predicates (on

partitioning attribute)

Disadvantage:

Difficult to ensure equal

sized partitions,

particularly in the face

of inserts and skewed

data

Hash Partitioning

Partition 1

Partition 2

Partition n

…

Table

H(T.A) = 1

H(T.A) = 2

H(T.A) = n

H(T.A) is a hash function mapping from each

record in T to its partition, based on value of

attribute A.

Advantages:

Each partition has

about the same number

of records, unless one

value is very frequent

Possible to push down

equality predicates on

partitioning attribute

Disadvantages:

Can’t push down range

predicates

Parallel Operations in a Partitioned DB

• SELECT

▪ Trivial to “push down” to each worker

▪ Depending on partitioning attribute, may be able to skip some partitions

• PROJECT

▪ Assuming all columns are on each node, nothing to be done

• JOIN

▪ Depending on data partitioning, may be able to process partitions individually and then

merge, or may need to repartition

• AGGREGATE

▪ Partially aggregate data at each node, merge final result

Join Strategies

• If tables are partitioned on same attribute, just run local joins

▪ Also, if one table is replicated, no need to join

• Otherwise, several options:

1. Collect all tables at one node

o Inferior except in extreme cases, i.e., very small tables

2. Re-partition one or both tables – “shuffle join”

oDepending on initial partitioning

3. Replicate (smaller) table on all nodes

Table Pre-Partitioned on Join Attribute

• Suppose we have hashed A on a, using hash function F to get F(A.a) → 1..n (n

= # machines)

• Also hash B on b using same F

• Query: SELECT * FROM A,B WHERE A.a = B.b

A2 B2

⨝

A1 B1

⨝

An Bn

⨝

Processor 1 Processor 2 Processor n

…

merge

A1 B1

Processor 1

split

A2 B2

Processor 2

split

An Bn

Processor n

split

Repartitioning Example – “Shuffle Join”

• Suppose A pre-partitioned on a, but B needs to be repartitioned

A1 B1

Processor 1

split

A2 B2

Processor 2

split

An Bn

Processor n

split

A1 B1

Processor 1

A2 B2

Processor 2

An Bn

Processor n

B1 B2 Bn

⨝ ⨝ ⨝

merge Generalizes to the case of
repartitioning both tables

Repartitioning Example

• Suppose A pre-partitioned on a, but B needs to be repartitioned

A1 B1

Processor 1

split

A2 B2

Processor 2

split

An Bn

Processor n

split

A1 B1

Processor 1

A2 B2

Processor 2

An Bn

Processor n

B1 B2 Bn

⨝ ⨝ ⨝

merge Generalizes to the case of
repartitioning both tables

Repartitioning Example

• Suppose A pre-partitioned on a, but B needs to be repartitioned:
How many bytes are sent from each machine?

https://clicker.mit.edu/6.8530/

A: (|B|/n) bytes
B: (|B|/n) / n * (n-1) bytes
C: 2* (A) (|B|/n) / n * (n-1) bytes

Repartitioning Example

• Suppose A pre-partitioned on a, but B needs to be repartitioned

A1 B1

Processor 1

split

A2 B2

Processor 2

split

An Bn

Processor n

split

A1 B1

Processor 1

A2 B2

Processor 2

An Bn

Processor n

B1 B2 Bn

⨝ ⨝ ⨝

merge Each node sends and receives
(|B|/n) / n * (n-1) bytes

|B|/n/n

|B|/n

Each partition is
|B| / n records
Repartitioning
splits it into n new
chunks, each node
sends n-1 of them

Repartitioning Both Tables

• Suppose both tables, A and B, need to be repartitioned

• Each node sends and receives

 (|A|/n)/n * (n-1) + (|B|/n)/n * (n-1) bytes

Replication Example

A1 B1

Processor 1

Send B

A2 B2

Processor 2

Send B

An Bn

Processor n

Send B

A1 B1

Processor 1

A2 B2

Processor 2

An Bn

Processor n

B B B

⨝ ⨝ ⨝

merge |B| / n * (n-1) bytes sent & received
by each node

• Suppose we replicate B to all nodes

Replication vs Repartioning

• Replication requires each node to send smaller table to all other nodes

▪ (|T| / n) * (n-1) bytes sent by each node

▪ vs ((|T| / n) / n) * (n-1) to repartition one table

• When would replication be preferred over repartitioning for joins?

▪ If size of smaller table < data sent to repartition one or both tables

▪ Should also account for cost of join: will be higher with replicated table

• Example: |B| = 1 MB, |A|=100 MB, n=3

• Need to repartition A (B distributed on join attr)

▪ Data to repartition A is |A|/3 / 3 * 2 = 22.2 MB per node

o Join .33 MB to 33 MB

▪ Data to broadcast B is |B| = 1/3 * 2 = .66 MB

o Join 1 MB to 33 MB

• Suppose we have two tables R and K, partitioned across 3 nodes

• |R| = 9 MB

• |K| = 90 MB

• Join is R.b = K.b

▪ K is hash partitioned on b, R is not partitioned on b

• How much data does each node send if repartition R vs replicate R:

A) 2 MB vs 6 MB

B) 6 MB vs 2 MB

C) 0.9 MB vs 9 MB

Replication: (|T| / n) * (n-1) bytes sent by each node

Partitioning: ((|T| / n) / n) * (n-1) to repartition one table

https://clicker.mit.edu/6.8530/

• Suppose we have two tables R and K, partitioned across 3 nodes

• |R| = 9 MB

• |K| = 90 MB

• Join is R.b = K.b

▪ K is hash partitioned on b, R is not partitioned on b

• How much data does each node send if we:

1. Repartition R

2. Replicate R

Replication: (|T| / n) * (n-1) bytes sent by each node

Partitioning: ((|T| / n) / n) * (n-1) to repartition one table

9 / 3 * 2 = 6 MB

(9 / 3) / 3 * 2 = 2 MB

https://clicker.mit.edu/6.8530/

Additional Options for Joins

• Pre-replicated small tables

▪ If space permits, can be a good option

• ”Semi-join”

▪ send list of join attribute values in each partition of B to A,

▪ then send list of matching tuples from A to B,

▪ then compute join at B

• Good for selective joins of wide tables

▪ Pre-filters A with join values that actually occur in B, rather than sending all of B

Semi-join Example

A D E

3 f g

4 h i

A D E

1 j k

5 l m

A B C

1 x y

3 z a

A B C

2 b c

4 d e

T1
P1

T2
P1

T1
P2

T2
P2

Node 1 Node 2

A

1

5

A

3

4

1 x y

4 d e

A B C D E

1 x y J k

A B C D E

4 d e h i

3 z a f g

Total cost:

Each nodes sends & receives

(|join col| / n) * (n-1)

+

(f * |A| / n) * (n-1)

Where f is join selectivity

(Like cost of replication, but only

for 1 column +filtered |A|)

Aggregation

Processor 1

A1 filter aggProcessor 2

A2 filter agg

merge

Runs on 1 of
the processors

In general, each node will have data for the same groups

So merge will need to combine groups, e.g.:

 MAX (MAX1, MAX2)

 SUM (SUM1, SUM2)

What about average?

 Maintain SUMs and COUNTs, combine in merge step

Generalized Parallel Aggregates

• Express aggregates as 3 functions:

▪ INIT – create partial aggregate value

▪ MERGE – combine 2 partial aggregates

▪ FINAL – compute final aggregate

▪ E.g., AVG:

o INIT(tuple) → (SUM=tuple.value, COUNT=1)

o MERGE (a1, a2) → (SUM=a1.SUM + a2.SUM, COUNT=a1.count+a2.count)

o FINAL(a) → a.SUM/a.COUNT

What does MERGE do?

• For aggregate queries, receives partial aggregates from each

processor, MERGEs and FINALizes them

• For non-aggregates, just UNIONs results

DB Parallel Processing vs General Parallelism

• Shared nothing partitioned parallelism is the dominant

approach

• Hooray for the relational model!

▪ Apps don't change when you parallelize system (physical

data independence!).

▪ Can tune, scale system without changing applications!

▪ Can partition records arbitrarily, w/o synchronization

• Essentially no synchronization except setup &

teardown

▪ No barriers, cache coherence, etc.

▪ DB transactions work fine in parallel Next time: Distributed
Transactions!

	Slide 1: Lecture 15: Parallel and Distributed Databases
	Slide 2: RECAP: OCC
	Slide 3: RECAP: Validation Rules
	Slide 4: Recap: OCC Validation
	Slide 5
	Slide 6: https://clicker.mit.edu/6.5830/
	Slide 7: Recap: Snapshot Isolation
	Slide 8: https://clicker.mit.edu/6.8530/
	Slide 9
	Slide 10: Parallel and Distributed Databases
	Slide 11: Parallel & Distributed DBs Overview
	Slide 12: Parallel DB Goal
	Slide 13: DB Specific Metrics
	Slide 14: Speedup Goal
	Slide 15: Barriers to Linear Scaling
	Slide 16: Properties of Parallelizable Workloads
	Slide 17: Parallel Architectures
	Slide 18: Types of Parallelism – Shared Everything
	Slide 19: Types of Parallelism – Shared Disk
	Slide 20: Types of Parallelism – Shared Nothing
	Slide 21: Types of Parallelism – Shared Nothing on Distributed File System
	Slide 22: Tradeoffs Between Parallel Architectures
	Slide 23: Tradeoffs Between Parallel Architectures
	Slide 24: Parallel Query Processing
	Slide 25: Pipelined Parallelism
	Slide 26: Partitioning Strategies
	Slide 27: Round Robin Partitioning
	Slide 28: Range Partitioning
	Slide 29: Hash Partitioning
	Slide 30: Parallel Operations in a Partitioned DB
	Slide 31: Join Strategies
	Slide 32: Table Pre-Partitioned on Join Attribute
	Slide 33: Repartitioning Example – “Shuffle Join”
	Slide 34
	Slide 35: https://clicker.mit.edu/6.8530/
	Slide 36: Repartitioning Example
	Slide 37: Repartitioning Both Tables
	Slide 38: Replication Example
	Slide 39: Replication vs Repartioning
	Slide 40
	Slide 41
	Slide 42: Additional Options for Joins
	Slide 43: Semi-join Example
	Slide 44: Aggregation
	Slide 45: Generalized Parallel Aggregates
	Slide 46: What does MERGE do?
	Slide 47: DB Parallel Processing vs General Parallelism

