
6.5830 Lecture 19

Advanced Cardinality Estimation
11/6/2024



Logistics

• Lab 3 due today!

• Project mid-term reports due Friday

• Your project contact (me or Tim) will get in 
touch regarding midterm project meetings



Recap: Query optimization

Query Optimizer:

• Rewrite rules
– Expert-designed rules

• Plan enumeration
– Selinger DP 

• Cardinality estimator
– Crucial for join ordering

and operator selection

– Arguably the most 
challenging problem

• Cost model
– CPU/IO cost calculation
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Why is Cardinality Estimation 
So Important?

⨝ c.key=s.key

⨝ n.key=c.key
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SELECT * FROM nation n, 
customer c, supplier s

WHERE n.nationkey = c.nationkey
AND s.nationkey = c.nationkey
AND n.name = ‘GERMANY’

Index vs seq scan?

Join algo?
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Which join order is better?

Accurate cardinality estimation is crucial and very challenging. 

𝛔

25

What join algo to choose?
What access method to choose?
(Need to consider cardinality 
estimation and cost information)



Overview: Why so challenging

Single column -> very easy. 

Multiple columns -> harder 
because of correlation.

Multiple tables (join)-> Much 
much harder because 
distribution and correlation 
changes after join. 

Table R

R.X R.Y

R.Z

Table S

S.X S.Y
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Table T

T.Y T.Z

T.X
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Roadmap

• Estimating the cardinality on single table

– Histograms (used by PostgreSQL)

– Handling correlated columns

– Special filter types and estimation methods

• Estimating cardinality of joins

– Uniformity assumption

– Joining histograms 

– Recent advances
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What are we estimating?

• Card(X<5) = 5/9 * 9 = 5

X
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2
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8
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15

Selectivity 
Pr(X<5)

Table size {R}
Cardinality

Filter 
predicate

Y

10

6

2

31

44

-5

-12

-82

97

…

…

…

Table R

Isn’t this just probability distribution P(X) of X? 

We denote the estimation of Card(X) as ^Card(X)



• Histograms can approximate any distribution (pdf) for 
a single attribute.

• Easy to build (ANALYZE): scan (sample of) one table. 

Equal-width histograms

Value of X
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 (
P

D
F)

0    5k    10k    15k    20k    25k    30k    35k     40k      ….          485k   

…

Assume within a bin, 
values are uniformly 
distributed 

0.61

0.09

0.05
…



Equal-width histograms

What is the estimation of ^Card(X<10K)? 

Is this accurate? 

We denote the estimation of Card(X) as ^Card(X)

What about ^Card(X<23K)?

D
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^Card(X<10K) = Card(X<10K) 

(0.61 + 0.09)*{R} 



Equal-width histograms
https://clicker.mit.edu/6.5830/

What is the estimation ^Card(X<23K)?
(a) 0.786 * {R}          (b) 0.806 * {R}
(c)  0.798 * {R}         (d) 0.794 * {R}

We denote the estimation of Card(X) as ^Card(X)
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Assume within a bin, 
values are uniformly 
distributed 



Equal-width histograms

^Card(X<23K) = (0.61+0.09+0.05+0.036+0.02*3/5)*{R} 

Assume:
values are 
uniformly 
distributed 
within a bin

Is this accurate? 

We denote the estimation of Card(X) as ^Card(X)

D
en
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ty

At most off by +- 0.02 *{R}

What about ^Card(X=0)? Is this accurate?



Equal-width histograms

Reality: we can have non-uniform distribution within a bin.
^Card(X=0) = 0.61*1/5000*{R} 

50 % of this bin has value 
X = 0 (30.5% of all table)
E.g., people may use 0 for 
missing value

What can we do?
• Equal-depth histograms
• Most common values

(MCV)

Not balanced
This bin really doesn’t 
make a difference in 
terms of accuracy

We denote the estimation of Card(X) as ^Card(X)

D
en

si
ty

Card(X=0) = 0.61*0.5*{R}

2500x under-estimate!!!!



Equal-depth histograms

Value Bins
0 0 00 240K – 485K1-200 … …12K-23k 200K-240K

… …

Bin width is different but every bin has the same density.
More efficient and more accurate estimation.

BUT slightly more expensive to build and maintain (e.g. keep 
balance during data update) than equal-width histogram

More elegant/efficient to merge these same bins

D
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Histograms + Most Common Values 
(MCV)

Value Bins
240K-485K12k-23k… … 200K-240K

… …

1-300 300-2k …

Value Density

0 0.305

2 0.05

8 0.008

… …

340 0.0002

0.004

0.008

0.0

^Card(X<10) = (0.305 + 0.05 + 0.008 + 0.004*10/300)*{R} 

First check the MCV table Then check the histograms

Increases accuracy, especially for point filter estimation.
Relaxes the assumption that values are uniformly distributed within each bin.

Cardinality estimation of a filter on a single-column is very accurate and efficient. 

MCV Table
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Stats in Postgres

Default: equal-depth histograms + MCVs

11 bins

47 MCVs

Number of bins and MCVs are tunable parameters of Postgres 



Stats in Postgres

Recap PS2: why is there no estimation error for filter ‘route_id > 10’?

0 bin (no histogram needed) 

18 MCVs

No need for histogram. Perfect stats using MCVs unless data changes.

Postgres automatically “ANALYZE”s the table when it is first loaded and 
whenever changed, unless manually turned off.



What about multi-column filters?

^Card(X<5 AND Y<0) 

= P(X<5) * P(Y<0) * {R}

= 5/9 * 3/9 * {R}

Filter on R: X < 5 AND Y < 0
Attribute independence assumptionX
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Y

10

6

2

31

44

-5

-12

-82

97

…

…

…

Table R

Card(X<5 AND Y<0) = 0

Large estimation error because X and Y 
are not independent. This error grows 
exponentially w.r.t. number of columns.

Estimated

True

We denote the estimation of Card(X) as ^Card(X)



1-D Histogram summary

• Histograms are the most widely used cardinality 
estimation method, used in Postgres and various 
commercial DBMSes.

• Pros
– Fast to build

– Negligible memory and inference overhead 
• O(nbins)   linear memory and inference time w.r.t. num of bins

– Easy to update with new data

• Cons
– Inaccurate for filters involving multiple columns

– Inaccurate for join size estimation (discuss later)



Roadmap

• Estimating the cardinality on single table

– Histograms (used by PostgreSQL)

– Handling correlated columns

– Special filter types and estimation methods

• Estimating cardinality of joins

– Uniformity assumption

– Joining histograms 

– Recent advances



Multi-dimensional histograms

Bin the value domain of 
two attributes.

Multi-dimensional MCV
Value of X Value of Y Density

0 0 0.05

0 1 0.04

0 -1 0.03

… …

2 -3.5 0.0001



Multi-dimensional histograms
https://clicker.mit.edu/6.5830/

Table R has attributes X, Y, Z. We want to estimate the 
cardinality of filter X = 0 and Y < 0 and Z > 5. 

You build a 2d histogram on X and Z to estimate ^Card(X = 0  
and Z > 5) = 0.2 * {R} and a 1d histogram on Y to estimation 
^Card(Y < 0) = 0.2 * {R}. Assume that the true card is 0.16 * 
{R}. 

How many times did you under/over estimate by?

(a) Underestimate by 2x          (b) Overestimate by 2x

(c) Underestimate by 4x          (d) Overestimate by 4x

We denote the estimation of Card(X) as ^Card(X)



Multi-dimensional histograms

X Y

Z

Table R with three attribute X, Y, Z
Filter on R with X = 0 and Y < 0 and Z > 5 

X Y

Z

X Y

Z

P(X)*P(Y)*P(Z)
Independence Assumption
O(nbins)

P(X, Z)*P(Y)
Some Independence Assumption
O(nbins2)

P(X, Z, Y)
No assumption O(nbins3)
May not be affordable

Strong assumption No assumption



Multi-dimensional histograms

• Many DBMS supports Multi-dimensional 
histograms (e.g., PostgreSQL) but not by default

• Memory and inference overhead is O(nbinsd)

– d is the number of dimensions (columns) 

• Generally unaffordable when d is large (e.g. d > 
2) even with modern histogram compression 
techniques

• What about filters on more (>2) attributes that 
are correlated?  → still very inaccurate.



Probabilistic Graphical Models

X Y

Z

Table R with three attribute X, Y, Z
Filter on R with X = 0 and Y < 0 and Z > 5 

X Y

Z

X Y

Z

P(X)*P(Y)*P(Z)
Independence Assumption
O(nbins)

P(X|Z)*P(Y|Z)*P(Z)
Conditional Independence 
Assumption 
O(nbins2)

P(X, Z, Y)
No assumption 
O(nbins3)
May not be affordable2D histograms

Strong assumption No assumption

Won’t be on quiz



Probabilistic Graphical Models

Dependency graph (tree) of rail_ridership

One 1-D histogram for each root
(e.g. P(station_ids))
One 2-D histogram for each edge

(e.g. P(average_ons|total_ons))

Bayesian networks 
Conditional independence 
assumption: 
Given a dependency graph, an 
attribute is conditionally 
independent of all other 
attributes given its parent(s).

Won’t be on quiz

Assume:

average_ons = 
total_ons/constant



Probabilistic Graphical Models

Dependency graph (tree) of rail_ridership

• PGMs provide a compact and 
accurate approach to build 
multiple 2-D histograms and use 
them for cardinality estimation.

• Each node will have at most one 
parent in a tree. O(nbins2) 
memory/inference complexity

• Tree-structured dependencies 
can preserve most correlations 
for many real-world data to 
provide accurate estimation on 
single table.

• A few DBMSes use PGM, such as 
ByConity from ByteDance

Chow, C. K.; Liu, C.N. (1968), "Approximating discrete probability distributions with dependence trees”

Lise Getoor and Daphne Taskar, Ben andKoller. (2001). “Selectivity estimation using probabilistic models”

Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, Jingren Zhou (2020), “Bayescard: Revitilizing bayesian frameworks for cardinality estimation”

Won’t be on quiz
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Complex filter predicates

• String pattern matching

– SELECT COUNT(*) from R WHERE X LIKE ‘%MIT%’;

• Complex mathematical expressions

– SELECT COUNT(*) from R WHERE SQRT(X*Y) – Z*3 > 0;

• User Defined Functions

– SELECT COUNT(*) from R WHERE my_hash(X) = 0;



Complex filter predicates

• Cannot use histograms to estimate them 

• Most DBMSes just assume some constant 
selectivity (e.g. 7%) for these predicates.
– Can still use histograms on other predicates

• Sampling as cardinality estimation
– Keep a sample (e.g. 1%) of R in memory

– Run the filter on this sample

– Pros: works for any filters

– Cons: very expensive / or not accurate
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Estimating Join Cardinality

• Arguably the most crucial and most challenging part 
of query optimization
– Good plans may execute in ~2 seconds while bad plans 

may execute for weeks. 

– Each join pattern imposes a unique data distribution and 
attribute correlation

• Objective for a desirable method:

– Accurate

– Lightweight (fast build time, low memory overhead)

– Fast (low inference overhead)



Uniformity assumption

Assume all join keys are uniformly distributed

e.g. {R} = 500, NDV(R.X) = 100, so each value repeats 
exactly 5 times (number of distinct values)

R.X value
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Uniformity Assumption
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R.X value

Frequency = 
{R.X}/NDV(R.X)
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u
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*NDV == Number of Distinct Values



Uniformity assumption

{R} = 500, NDV(R.X) = 100, so each value repeats exactly 5 times

{S} = 1000, NDV(S.Y) = 500, so each value repeats 2 times

^Card(R.X ⨝ S.Y) = {R} * {S} / max(NDV(R.X), NDV(S.Y))  (Lecture 5)

^Card(R.X ⨝ S.Y) = min(NDV(R.X) , NDV(S.Y)) * {R.X}/NDV(R.X) * {S.Y}/NDV(S.Y)  

Num. of distinct values in join result Each value will have this many repeats

At most how many unique values can there be in the result 
of the inner join R.X ⨝ S.Y?
How many times can a value repeat in the result of the 
inner join R.X ⨝ S.Y?

Min(100, 500) = 100 

5 * 2 = 10
^Card(R.X ⨝ S.Y)?      100 * 10 = 1000



https://clicker.mit.edu/6.5830/
Uniformity assumption

Two tables R with {R} = 500, {S} = 1000, NDV(R.X) = 100,

NDV(S.Y) = 500. Filter on R.A < 0 has selectivity of 20%. Filter on 
S.B > 0 has selectivity of 10%.  

• Q1: What is ^Card(R.X ⨝ S.Y AND R.A < 0 AND S.B > 0), under uniformity 
assumption?

• Q2: Suppose the actual cardinality is larger than your estimation, what is 
the maximum possible estimation error? (in terms of Card/^Card)

– (a) 1-10x underestimation 

– (b) 10-100x underestimation

– (c) 100-1000x underestimation

– (d) more than 1000x underestimation

We denote the estimation of Card(X) as ^Card(X)



Uniformity assumption

• Q1: What is ^Card(R.X ⨝ S.Y AND R.A < 0 AND S.B > 0)?
– 1000 x 0.1 x 0.2 = 20

• Q2: Suppose the actual cardinality is larger than your 
estimation, what is the maximum estimation error?
– After R.A < 0, R will have 100 rows; after S.B > 0, S will have 100 rows

– If distribution is highly skewed after the filter, max(card) = 100 * 100 = 
10000

– 500x estimation error

We denote the estimation of Card(X) as ^Card(X)



Uniformity assumption

• Most DBMSes use this assumption

• Pros: lightweight, fast

– #distinct can be read-off from index (if available)

– Negligible memory/computation overhead

• Cons: very inaccurate

– Real-world data are highly-skewed

– Error will accumulate exponentially w.r.t. number 
of tables



Roadmap
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Joining Histograms

R.X value
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Apply the same bins on S.Y

Bin
No.

bin Density 
of R.X

Density 
of S.Y

Density 
of join

0 0-10 80 30 240

1 10-20 50 40 200

2 20-30 40 60 240

3 30-40 30 40 120

… … … … …

10 90-100 2 10 2

- All - - 887

Uniformity assumption only in each bin
80 * 30 / max(10, 10) = 240 

Sum up all bins

Relaxed version of uniformity assumption

Yannis Ioannidis (2003), “The History of Histograms (abridged)”



Joining Histograms

• A few DBMSes use this approach (e.g., Oracle)

• More expensive but more accurate than join 
uniformity assumption.

• Drawbacks
– Cannot account for correlation between filtered 

attributes and join keys.

– The same bins must be applied to the join keys
• A set of bins that works well on R.X may not be optimal for S.Y



Roadmap

• Estimating the cardinality on single table

– Histograms (used by PostgreSQL)

– Handling correlated columns

– Special filter types and estimation methods

• Estimating cardinality of joins

– Uniformity assumption

– Joining histograms 

– Recent advances (optional content)



Recent advances in cardinality 
estimation

• Very active ongoing field of research 
– ~20 papers in SIGMOD/VLDB per year in the last 5 years.

• Two directions
– Data-driven: build stats by analyzing the data 

• Everything you have seen so far

• Use sophisticated statistical/ML models to understand distribution

– Query-driven: do not analyze data, analyze query
• Map query to its actual cardinality from execution feedback

• Featurize the query and use ML/DL-based regression models

Won’t be on quiz



Data-driven: Denormalize

• Join tables together (denormalize) and treat the 
denormalized result as a single table 

• Very accurate but very heavy-weight and slow
– There can be exponential number of possible joins in a database with 

n tables

– Need to understand the data distribution for each one

R.X R.A

1 12

2 62

2 -1

3 -7

4 99

… …

S.Y S.B

1 0.2

1 1.4

2 -9.1

2 -1.1

3 8.3

… …

⨝

R.X R.A S.B

1 12 0.2

1 12 1.4

2 62 -9.1

2 62 -1.1

2 -1 -9.1

… … …

Can accurately 
answer any query 
such as 
(R.X ⨝ S.Y AND R.A 
< 0 AND S.B > 0)

Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, Ion Stoica (2020), “NeuroCard: One Cardinality Estimator for All Tables”

Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, Carsten Binnig (2019), “DeepDB: Learn from Data, not from Quer ies!”

Rong Zhu*, Ziniu Wu*, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian, Jingren Zhou, Bin Cui (2020) , “FLAT: Fast, Lightweight and Accurate Method for Cardinality Estimation”

Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, Jingren Zhou (2020), “Bayescard: Revitilizing bayesian frameworks for card inality estimation”

Won’t be on quiz



Data-driven: FactorJoin

• Build a factor graph to generalize the joining histograms 
approach to accurately estimate any join with filters.

• Only need to understand the data distribution in each single 
table, combining single-table probabilities into probabilities 
on the denormalized (joined) tables using factor graph. 

Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, Samuel Madden (2023), “FactorJoin: A New Cardinality Estimation Framework for Join Queries”

V1 V2 V3

R S KT

Factor graph rep. of a join graph

Join keys

Single table 
distributions
(e.g. PGM in term 
of histograms)

Won’t be on quiz



Query-driven

• Many DBMSes have execution 
history (with cardinality info)

• Featurize the queries (SQL)
• Train deep neural network to 

map query to its cardinality

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter  Boncz, Alfons Kemper (2018), “Learned 
Cardinali ties: Estimat ing Correlated Joins with Deep Learning”
Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong Li (2021), “Fauce: fast and accurate deep ensembles 
with uncertainty for cardinal ity estimation”

Ji Sun, Guoliang Li (2019), “An end-to-end learning-based cost  estimator”

Won’t be on quiz



Query-driven

• Accuracy varies
– Can be very accurate

– Can be inaccurate if workload changes (training and testing queries 
mismatch) or data updates

• Can handle complex filter
– Special query featurization for LIKE or user-defined functions

• Deep learning model can be expensive 
– Requires a large amount of training data

– Large memory/computation overhead

– Requires special hardware (e.g. gpu)

Won’t be on quiz



Summary

• Cardinality estimation is crucial and 
challenging
– Simplified assumptions make this problem 

tractable and practical in DBMS, but can have 
huge estimation errors.

– Advanced approaches makes it 
very accurate but more 
expensive to create/use.

– Numerous ongoing research 
to find the sweet spot.
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