High-
Performance
Transactions

6.5830/6.5831
Lecture 18
Sam Madden

Based on slides from Tianyu Li

Recap — Transaction Model So Far

Single-node
e Disk-based
o 2PL

e Write-ahead Logging + Checkpoints

Recap - Transactions

Multi-node
e 2PC for multi-node transactions

e Shared-nothing architecture. Use replication for high-availability.

Critique
e "“Classical” DBMSes matured in the 80s
and 90s

e Hardware & workloads were very
different back then

e Why are we still using the same model
for processing transactions?

Times Are Different

Slow Networks (< 10 Mb/sec)
Small number of on-prem machines
Single or few-core

Few MB of memory

Is ARIES still the right way to go?

40+ Gb/sec
Global-scale, cloud
100+cores

100+GB RAM / machine

Classic Design Has High Overhead

Running old code on new
hardware != speed-up

New performance
bottlenecks

New architecture required
to make use of faster
hardware

Instructions

1.8M -
1.6M -
1.4M -
1.2M -
1.0M -
8M -
M -
AM -
2M -

16.2% hand-coded

optimizations

11.9%

logging

16.3%

locking

14.2%

latching

34.6%

buffer manager

- — -useful work

Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden,
and Michael Stonebraker. OLTP through the looking
glass, and what we found there. SIGMOD 2008

Today -- High Performance Transactions

e Looking Back

e Multi-node
o Bottleneck: 2-Phase Commit
o Single-Site Execution
o Deterministic Transactions

e Cloud Transactions

Recap: Scaling a Database

More shards/partitions --- more parallelism and throughput

»
»

< < >
1 Te
replicas --- —

higher —
availability

* Replicas usually also serve read requests

Recap: Scaling a Database

2-Phase Commit

3 > i
Ao e

N~

Primary-Backup S

Replication

v

Unless we are careful, replication hurts write
performance, but increases availability

Recap: 2-Phase Commit

s Wb

Commit Point

Log start of transaction
Execute transaction on worker nodes “’d“‘é" Worker
PREPARE each worker = PREPARE(T) @

L] [] []
Log transaction commit if all O P Fw(eRepARE)

VOTE(T,YES/NO) o

Commit each worker 04—
Log Done FW(COMMIT/ABORT)

o COMMIT/ABORT(T)
FW(COMMIT/ABORT)

ACK — a
W(D!NE), once all W’s ACK

Critique: 2-Phase Commit

e 2 network round trips + synchronous logging
o Worse still — likely need to hold locks throughout process

e 2PC blocks when coordinator fails

e 2PC sacrifices performance for strong guarantees

Example: Google Spanner

e A rare example of geo-distributed strongly
consistent transactional system
o You get the same guarantee as single-node

e Optimized for read-only transactions with
TrueTime

e Optimized 2PC (on Paxos

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew F

s, Christopher Frost, JJ Furman,

Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,

David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasu

i Saito, Michal Szymaniak,

Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google's scalable, multi-version, globally-
distributed, and synchronously-replicated database.
the first system 1o distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
ng various design decisions, and a
novel time API that exposes clock uncertainty. This API
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

1 Introduction

Spanner is a scalable, globally-distributed database de-
signed, built, and deployed at Google. At the high-
est level of abstraction, it is a database that shards data
across many sets of Paxos [21] state machines in data-
centers spread all over the world. Replication is used for
global availability and geographic locality: clients auto-
atically failover between replicas. Spanner automati-
cally reshards data across machines as the amount of data
or the number of servers changes, and it automatically
migrates data across machines (even across datacenters)
0 balance load and in response to failures. Spanner is
designed to scale up to millions of machines across hun-
dreds of datacenters and trillions of database rows.
Applications can use Spanner for high availability,
even in the face of wide-area natural disasters, by repli-
cating their data within or even across continents. Our
initial customer was FI [35], a rewrite of Google's ad-
vertising backend. F1 uses five replicas spread a

Corbett et. al. Spanner: Google’s Globally-

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by other authors [37].) Many applications at Google
have chosen to use Megastore [S] because of its semi-
relational data model and support for synchronous repli-
cation, despite its relatively poor write throughput. As a
consequence, Spanner has evolved from a Bigtable-like
versioned key-value store into a temporal multi-version
database. Data is stored in schematized semi-relational
tables; data is versioned. and each version is automati-
cally timestamped with its commit tim
data are subject to configurable garb
cies: and applications can read data at old timestamps.
Spanner supports general-purpose transactions, and pro-
vides a SQL-based query language.

As a globally-distributed database, Spanner provides
several interesting features. First, the replication con-
figurations for data can be dynamically controlled at a
fine grain by applications. Applications can specify con-
straints to control which datacenters contain which data,
how far data is from its users (to control read latency),
how far replicas are from each other (to control write la-
tency). and how many replicas are maintained (to con-
trol durability, availability, and read performance). Data

Distributed Database. OSDI 2012

Problem

2PC Scalability

2PC end-to-end Latency

latency (ms)
operation mean | stddev | count
all reads Sed 376.4 | 21.5B
single-site commit 112.8 | 31.2M
multi-site commit 922 32.1M

latency (ms)
participants mean | 99th percentile
1 170 +1.4 75.0 £34.9
2 24.5 +£2.5 87.6 £35.9
5 31.5 +6.2 104.5 +£52.2
10 30.0 +3.7 95.6 £25.4
25 S50 =G 100.4 +42.7
50 427 +4.1 93.7 £22.9
100 71.4 +7.6 131.2 +17.6
200 150.5 +11.0 320.3 £35.1

e 2PC is very expensive

Question: Can we do
better?

Aside: Why is this difficult?

Well-known theoretical limitations

e In short, you CANNOT have a “fast and reliable” distributed ACID system.
o Two Generals Problem [Gray ‘78]
o CAP Theorem [Brewer ‘00, Gilbert ‘02]
o Coordination Avoidance in Database Systems [Bailis ‘15]

e We covered this last lecture
o Many use cases regress to using “NoSQL" systems with more
scalability but less guarantees

Why bother with distributed transactions then?

e Really powerful abstraction
e Extremely useful

e Impossibilities are mathematical. We are here to build systems*.

* Often called “NewSQL” systems

Attempt 1: H-Store

e Large collaborative project @ MIT (among other places) .
e Distributed & main-memory

e Commercialized as VoltDB

l:]-Store

%y
YOLTDB

How to make transaction processing

databases 10x faster?

e Eliminate

O

O

O

O

16.2% hand-coded
optimizations

16.3%

11.9% jogging ¥——__ Multi-thread

14.2%

Disk I/0O
Locking
Concurrency C

34.6%

buffer manager

useful work

Disk based rec
Sounds nuts, but g

o Do this while preserving transactional guarantees
o Get massive scalability, even on multicores

locking [concurrency
overhead

latching

Disk-based

system
overhead

No Disk

e Horizontally partition into RAM-sized chunks
o Most OLTP workloads partition nearly perfectly

m E.g., in Amazon, almost all transactions begin with a customer
m Also true of TPC-C, Ebay, travel sites, banking, etc.

o Most OLTP databases easily fit into the aggregate RAM of a cluster

Doy o v v v v v v

v
[Table 1 | | Table2 | [Table 3 | | Table 4 | Table 1 | || Table2 | || [Table3 | || [Table 4

Core Core Core Core Core Core Core Core

Threads Partitions

e Replicate for durability
o If one site crashes, another has data

Image courtesy of Prof. Andy Pavlo

Example stored procedure:

No Concurrency Control

Debit (A, B, amt):
UPDATE accts SET bal
WHERE acct no = $SAS
UPDATE accts SET bal = bal + amt

e Single-threaded execution msre acct_no = s8s
o Only execute one transaction at a time
o All transactions “one shot” stored procedures
s No user stalls / “think time”
o Concurrent transactions needed to mask I/O latency
s Unneeded if every transaction takes 100 us and there are no disk,
network, or user stalls

e Fall back on 2PC for multi-site transactions

bal - amt

Remember, database is in memory and most transactions
can be answered at a single partition!

No Disk-based Logging

e Recover from replicas
- By copying state on crash
o Possible to asynchronously checkpoint to disk

e May need in-memory logs for transaction undo

Is this reasonable?

Specialized for OLTP (Online Transaction Processing) workload
e Transactions access a few records
e Transaction templates are known beforehand
e Working set fits in memory

e Data is (mostly) partitioned

Example: TPC-C

Standardized benchmark used by everyone
Models a warehouse order processing system
Several types of transaction issued at random

E.g. NewOrder Transaction:
o Check item stock level
o Create a new order
o Update item stock level

Small set of pre-declared transactions

H-Store: Performance

 Vanilla H-Store ran 70K TPC-C txns
e At the time:
« MySQL ~1K on similar hardware

* At the time, TPC-C record was about 133 K txn/s on a 128 core server.
H-Store achieved half of that on low-end desktops.

H-Store: Partitioning

e H-Store performance hinges on percentage of one-site txns
e Huge win if we can maximize one-site probability
e Intelligent partitioning required

160,000 r— Single-Partitioned === |
140,000 - 10% Distributed - |
E 120,000 | 5802 B:gg:gg:gg : ...
:/100,000 ..
_él 80,000
g{) 60,000 ..
é 40,000 [ommnns B W e

20,000 |-

N —

4 8 16 32 64
of Partitions

H-Store: Speculative Execution

e Recall: H-Store single-threaded
e Problem: 2PC takes > 10 ms to complete
e If lots of 2PC, performance suffers

e In vanilla H-Store partition simply waits out the 10ms instead of doing work

H-Store: Speculative Execution

e Observation: Most transactions succeed

e Idea: Assume transaction succeeds. Forge ahead but don't release
speculative results.

e Problem: introduces concurrency, but must not add overhead

Evan P.C. Jones, Daniel J Abadi, Samuel
Madden. Low Overhead Concurrency
Control for Partitioned Main Memory
Databases. SIGMOD 2010

H-Store: Speculative Execution

e Idea: Speculate when waiting for 2PC outcome (e.g., after the transaction
has completed)
o No locks required

o Local transactions execute assuming 2PC will complete
o Results held back until 2PC finishes

o Record undo information in-memory

o If 2PC fails, all speculated transactions fail

o Paper explores several other models

H-Store: Speculative Execution

e Synthetic benchmark ---
single operation
transactions

e Baseline no conflict

Transactions/second

30000

25000

20000 r

15000 r

10000 r

5000 |

Speculation

Sso Vanilla H-Store
““~~___Blocking

Specialized_
Locking

0%

20%

40% 60% 80%

Multi-Partition Transactions

100%

Attempt 2: Calvin / Aria

e Why is H-Store faster without concurrency?

e No non-determinism from threading
o Limits cross thread/node coordination need
o Coordination often a bottleneck

e Can the same idea be applied to truly distributed transactions?

Key Idea: Calvin

e Have a global deterministic ordering of transaction execution.

e Take the input and execute anywhere. Get the same result.

Alexander Thomson et. al. Calvin: Fast
Distributed Transactions for Partitioned
Database Systems. SIGMOD 2012.

Calvin: Fast Distributed Transactions
for Partitioned Database Systems

Alexander Thomson

Thaddeus Diamond

Shu-Chun Weng

Yale University Yale University Yale University
yale.edu i yale.edu ale.edu
Kun Ren Philip Shao Daniel J. Abadi
Yale University Yale University Yale University
kun@cs.yale.edu shao-philip@cs.yale.edu dna@cs.yale.edu

ABSTRACT

tems achieve hrough-
put via partitioning and replication, each system with its own ad-
and tradeoffs. In order to achieve high sca ow

systems generally reduce transactional support, disal-

1. BACKGROUND AND INTRODUCTION

One of several current trends in distributed database system de-
from supporting traditional ACID database
systems. such as Amazon’s Dynamo [13], Mon.
20DB [24], CouchDB [6], and Cassandra [17] provide no transac-

p Calvin
i 2 practical transaction scheduling and data replication layer that
uses a deterministic ordering guarantee to significantly reduce the
normally prohibitive contention costs associated with distributed
Jnlike previous deterministic database system proto-

inearly on

point of fail.
than effects, Calvin is

ultiple
2 consistency across geographically distant
0 cost to transactionl throughput.

and Subject Descriptors
24 [Disributed Systems: Disributed databases
H.2.4 [Database Management]: Systems—concurency, distribted

General Terms

Algorithms, Design, Performance, Reliability

p p y
ality, such as single-row transactional updates (c.g. Bigtable [11])
or transactions whose accesses are limited to small subsets of

Database [26]). y
does not support fully ACID transactions s to provide linear out
ward scalabilty. Other systems (e.g. VoltDB (27, 16]) suppost full

ACID, but cease (or limit) concurrent transaction execution when
processing a transaction that accesses data spanning multple part

Reducing transactionsl support greatly simplifes the task of build.
ing linearly scalsble distributed storage solutions that are des
“embarrassingly partitionable” applications. For applica

e not casily partiionab}
d solaton is generally lef to 1

ed

however, the burd

cation development, and low-performance clientside transaction
scheduling

Calvin i designed to run alongside a non-transactional storage
system, transforming it into a shared-nothing (near-)linearly scal-
able database system that provides high availability' and full ACID
transactions. These transactions can potenially span multiple parti-

Deterministic Transactions

Client Client Client
T Sequencer only
— External issues
Sequencer transactions that
T3 don’t conflict

Deterministic Transactions

® Observe: this is not so different from 2PL, where execution is equivalent to a serial schedule

® However: Calvin fixes the schedule before execution, so no locking required

® Assuming we only issue concurrent transactions that don’t conflict
® Therefore: coordination also largely done before execution

® Avoids 2PC because no deadlocks; if a node fails it can simply re-run transactions in pre-
determined order

Practical Considerations

e Sequencer needs to know which items a transaction will access
e Hard! What about
UPDATE sal = sal * 1.05 WHERE sal < 50k
e Locks that are needed are data dependent

e Sequencer is a bottleneck of the system and single-point of failure
e We still want concurrency for performance on a single node

e Need to be recoverable / durable

Practical Considerations

e Sequencer is a bottleneck of the system and single-point of failure

Sequencer: Initial Attempt

Client

Client

Client

N

Special Node

= —

Attached
Storage

Sequencer: Initial Attempt

Client

Client

Client

SN

Special
Node

Special node failure difficult to handle

Txn throughput bottlenecked by special node
throughput

Distributed Sequencer

Client

Sequencer

A

\ 4

y

Sequencer

A

\ 4

\

Sequencer

s 8 =

Don’t synchronize for every
request

Each sequencer collects a
batch of requests

Periodically replicate / persist
and exchange batches

Practical Considerations

e We still want concurrency for performance on a single node

B~ Oy

Scheduler: Deterministic C . IS

Consider Schedule: e y ' I CORES
- N 4 3
L CORE7 ~,' ’
\ ;,' ‘, ’

T e SRR BB ., 4 ' /" corea

Read A, Write B CORES |

e No actual conflict
e No reason to execute in-order
e Challenge: concurrent execution that prese

.....
.....

Scheduler: Deterministic Concurrency Control

e Need to allow for concurrent execution

e However, concurrent execution has to follow predetermined schedule

Scheduler: Deterministic Concurrency Control

e Similarto 2 PL

e Allow arbitrary concurrent execution permitted by lock manager

e However, control how locks are granted

Scheduler: Deterministic Concurrency Control

Lock Table

Lock Thread

\ 4

T1

T2

T3

T4

T5

16

Deterministic Schedule

Don'’t request locks, grant locks.

Dedicated lock thread assigns
locks strictly in predetermined
order

Transaction executes when all
locks are granted

Assumption: read/write set
known / can be determined
before execution

Practical Considerations

e Need to be recoverable / durable

Logging and Checkpoints

e Transactions still need to be durable: since we don’t want to FORCE after
every command, need to have a way to redo work

e Because deterministic:
e Can just log commands and the order they execute in
e No undo logging required

® No deadlocks / node-generated aborts

e Checkpointing needed
o Otherwise, on failure, have to replay from the beginning of time
o Need a way to take transaction-consistent snapshots \\

N\

Calvin: Results

total throughput (txns/sec)

500000
400000
300000
200000
100000

0

0

10 20 30 40 50 60 70 80 90 100
number of machines

TPC-C (100% New Order)

Calvin: Results

total throughput (txns/sec)

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

10% distributed txns, contention index=0.0001
100% distributed txns, contention index=0.0001 ———
10% distributed txns, contention index=0.01 =-------

e Synthetic
Microbenchmark

160,000 (e ="
ingle-Partitiones
140,000 H 10% Bistributed
20% Distributed ===
£120,000 30% Distributed ——

0 10 20 30 40 50 60 70 80 90 100 #of%zartitions

64

number of machines

Calvin: Criticism

e Transaction read/write sets must be known beforehand

e Not always practical

Aria: Practical Deterministic OLTP

e Relaxes the requirement to know R/W sets beforehand
e Speculatively execute first, repair later

e Details omitted

Aria: A Fast and Practical Deterministic OLTP D

YiLu 1, Xiangyao Yu 2, Lei Cao 1, Samuel Madden

M idge, MA, USA
W USA

wtn

Yi Lu, Xiangyao Yu, Lei Cao, Samuel
Madden. Aria: A Fast and Practical
Deterministic OLTP Database. VLDB 2020.

Takeaways

e Determinism can be a good thing

e Distributed coordination off the critical path = win

What have we achieved?

e A class of new transactional systems (aka. NewSQL) that retains the strong
guarantees of traditional relational DBMS, while being much more scalable
and performant like NoSQL systems

o These systems are largely main-memory systems
o These system optimize around partitioning and sharding for
performance

o These system feature new, interesting concurrency control / distributed
commit schemes

o Txn throughput went from a couple of thousands to millions per second

We Are Boring

Sam Madden

madden@csail.mit.edu

Al is enjoying a renaissance, with popular press and major corpo
a variety of smart, Al-based applications, from self-driving cars to
household robots to household gadgets that learn our behaviors and

Despite all of these applications revolving around data, the datal]
content to cede these domains to our Al colleagues. This is absurdly
the world-wide web, and (nearly) big data, we risk being an also-r.
in computer science in the coming decade. These smart systems wi
work, and play, and the database community ought to be thinking

.2 9o .

What Are We Doing With Our Lives?
Nobody Cares About Our Concurrency Control Research

Andrew Pavlo
Carnegie Mellon University
pavlo@cs.cmu.edu

ABSTRACT

Most of the academic papers on concurrency control published in
the last five years have assumed the following two design decisions:
(1) applications execute transactions with serializable isolation and
(2) applications execute most (if not all) of their transactions using
stored procedures. I know this because I am guilty of writing these
papers too. But results from a recent survey of database administra-
tors indicates that these assumptions are not realistic. This survey
includes both legacy deployments where the cost of changing the
application to use either serializable isolation or stored procedures

1. ACKNOWLEDGEMENTS

This work was supported (in part) by the Intel Science and Tech-
nology Center for Big Data and the U.S. National Science Founda-
tion (CCF-1438955).

2. BIOGRAPHIES

Andrew Pavlo is an Assistant Professor of Databaseology in the
Computer Science Department at Carnegie Mellon University. At
CMU, he is a member of the Database Group and the Parallel Data
I faial

1L 1 1ol : itk slao Tatal Coi

L WHAT IE.1.TOMD YoU
Criticism A e

e Do we really need many more transactions per second?

o In most enterprises, general purpose OLTP (e.g., L
Postgres / MySQL) are fine i

HAS SIG{N:IiFIGﬂNTI.Y SLOWED DOWN
o Some extremes: 750 M reqg/s on China’s 11/11 DEVELOPMENT AND NOW USERS ARE

Single's Day GUMPI.ﬂINING ABOUT A LACK OF FEﬂTURES
o Most of this workload embarrassingly parallel

® Are these new algorithms practical?

o Assumptions, e.g., all data in RAM, replicas for

recoverability, write sets known requires specialized
use cases and assumptions

o Often easier to just use a general-purpose system

Transactions in the Cloud

e Several differences
o Failures common

o Must replicate across availability zones and even data centers
o Highly-available shared object storage (e.g., S3) exists
o Desire for “pay as you go” scaling

e A number of new “cloud-native” database systems have emerged
o E.g., AWS Aurora, Snowflake, SingleStore, FoundationDB, etc.
o Build on top of existing cloud storage services in “shared-disk” fashion
o Most separate compute and storage for flexibility

Cloud-native OLTP

e Key ldea: Storage & Compute Separation
o Use cloud object storage (e.g., S3) for persistent storage layer
o Attach ephemeral machines to storage when needed
o Allows for separate scaling of resources

e Key Challenge: Performance
o Object storage is often slow & over the network (upwards of 10ms
instead of hundreds of microseconds of fast SSDs, and often rate-
limited to tens of MBs per second)

o -

“Primary” .
. MySQL or Post S E
Example: Amazon Aurora S ot Eng | | Tassactins |
(Caching A i
N | /
e Idea: take existing DBMS (e.qg., Storage nodes c"’DD.D“ !
PostgreSQL), and replace the storage layer Logging + Storage
S %

e Optimized storage layer to reduce commit
latency and materialize pages in S3 using
logging

e Data distributed across multiple storage
nodes for read performance and high

availability
e Avoids use of 2PC by using quorum writes

Cluster Volume

STORAGENODE

oo o @ o
Aurora Execution)
On write, storage node: . oo I
Storage ¢
(1) receives redo records, voces | @ PONT IN T

(2) appends them to an update queue, acks

[S3 BACKUP]

In background, the storage node
(3) sorts and groups records,
(4) gossips with peers to fill in missing records,
(5) coalesces them into data blocks,
(6) backs them up to S3,
(7) garbage collects backed-up data
(8) periodically verifies checksums continue to match the data on disk.

Storage

« Every write is structured as a REDO log, with a unique LSN
o Storage nodes flush blocks to S3 asynchronously

« Data is partitioned into segments, which are replicated

 Different segments may be on different replica sets

« Each segment has a separate log

Log Processing

* Every write (log record) has an LSN, generated by primary
« Storage nodes process log writes in order
o Stall if missing a block
 If a storage node is missing some log, it gossips with other nodes to fill in holes

AZ 1 ; AZ?2 E AZ3
Aurora E Aurora 3 Aurora
PostgreSQL | ! PostgreSQL ! PostgreSQL
Writer ' Reader ! Reader

')
i r—— . SRERN 1 POCRIR.. . DO, ety oo, Argnnn. 4 ,
ST T IICT T b==4 LRI I a1 | IRACT | QR
: |Storage | [Storage | O—T*‘Slcv.wgt Storage | «—— |Storage | |Storage | : Monitori
:| Node Node ‘ Node Node | ! Node Node |: n9

Log blocks *

Quorum Writes

R h h ” I AZ1 AZ2 AZ3 5
ather than writing all replicas, primar = = W 23read
. J P P y x = S 23wite
writes to a quorum :
. . = = X :
Allows survival of failure of one or more . - g Jorm
] [| [] X - :
. 3 AZ failure :
replicas e .
Typically, Aurora uses N=6, W=4, meaning . Az1 | AZ2 AZ3 ;
- - - ST ART RN T
it can tolerate the failure of 2 replicas. T
o Replicas are spread across 3 BN | BN | EE quonum
N N X X survives
U U WX Azfailure :

availability zones
o Tolerating 2 failures allows one AZ to

. Figure 1: Why are 6 copies necessary ?
be down and one other failure

Reads

« Aurora does not need to do quorum reads, because of the use of a primary
o Either data is in cache
o Or it knows which replicas have the most current version of each block
m Since it coordinates all of the writes

N\

N\

https://dl.acm.org/doi/10.1145/3183713.3196937

Commit

« Transactions may write data stored in different segments
* Since segments are on different replica sets, seems to require 2PC
* However:

o Primary does concurrency control, properly sequences writes
m No deadlocks will be generated on storage nodes

o Quorum writes ensure that replica sets will not fail
m Aslong as a quorum of nodes stays up

= 2PC isn't required

o Commit point is when primary’s log has been replicated
m Logis stored on one replica set

* Recovery of primary is somewhat complicated; see paper

https://dl.acm.org/doi/10.1145/3183713.3196937

Performance

« Despite 4x+ write amplification,

performance is good because:

O

Writes append to REDO log; no
synchronous block writes

Data is spread across many
storage nodes, allowing for high
concurrency

No 2PC required for commit

No read amplification

Aurora vs. MySQL on EBS (cloud storage)

Table 5: Percona TPC-C Variant (tpmC)

Connections/Size/ | Amazon @ MySQL | MySQL
Warehouses Aurora 5.6 5.7
500/10GB/100 73,955 6,093 25,289
5000/10GB/100 42,181 1,671 2,592
500/100GB/1000 70,663 3,231 11,868
5000/100GB/1000 @ 30,221 5,575 13,005
Web transactions res| ponse time ~ Aurora 3X faster on r3.4xlarge

\

\

|
gz

Wysal [Aurora Migration

Figure 8: Web application response time

Aurora is higher throughput and lower
latency, because of use of log shipping and
scalable backend

Takeaways

® Transactions have come a long way since the classical
2PL + ARIES + 2PC

® A host of new systems leveraging workload
specialization and other clever insights to boost
transactional performance by many orders of

magnitude
o Whether all of this speed-up is needed is
debatable

o Regardless, many of the innovations run in
production today

® Transaction research is alive and well in new settings
such as the autoscaling cloud

A Scaly Cloud

