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Recap – Transaction Model So Far

Single-node

● Disk-based

● 2PL

● Write-ahead Logging + Checkpoints



Recap - Transactions

Multi-node

● 2PC for multi-node transactions

● Shared-nothing architecture. Use replication for high-availability.



Critique

● “Classical” DBMSes matured in the 80s 
and 90s

● Hardware & workloads were very 
different back then

● Why are we still using the same model 
for processing transactions?



Times Are Different

1980s Now

Slow Networks (< 10 Mb/sec) 40+ Gb/sec

Small number of on-prem machines Global-scale, cloud

Single or few-core 100+cores 

Few MB of memory 100+GB RAM / machine

Is ARIES still the right way to go?



Classic Design Has High Overhead

● Running old code on new 
hardware != speed-up

● New performance 
bottlenecks

● New architecture required 
to make use of faster 
hardware

Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, 
and Michael Stonebraker. OLTP through the looking 
glass, and what we found there. SIGMOD 2008



Today -- High Performance Transactions

● Looking Back

● Multi-node
○ Bottleneck: 2-Phase Commit
○ Single-Site Execution
○ Deterministic Transactions

● Cloud Transactions



Recap: Scaling a Database

A B C

More shards/partitions --- more parallelism and throughput

A’

A’’

More 
replicas ---
higher 
availability

* Replicas usually also serve read requests



Recap: Scaling a Database

A B C

A’

A’’

2-Phase Commit

Primary-Backup 
Replication

Unless we are careful, replication hurts write 
performance, but increases availability



Recap: 2-Phase Commit

1. Log start of transaction
2. Execute transaction on worker nodes
3. PREPARE each worker
4. Log transaction commit if all OK
5. Commit each worker
6. Log Done

Commit Point



Critique: 2-Phase Commit

● 2 network round trips + synchronous logging
○ Worse still — likely need to hold locks throughout process

● 2PC blocks when coordinator fails

● 2PC sacrifices performance for strong guarantees



Example: Google Spanner

● A rare example of geo-distributed strongly 
consistent transactional system 

○ You get the same guarantee as single-node

● Optimized for read-only transactions with 
TrueTime

● Optimized 2PC (on Paxos) Corbett et. al. Spanner: Google’s Globally-
Distributed Database. OSDI 2012



Problem

2PC Scalability 2PC end-to-end Latency

● 2PC is very expensive



Question: Can we do 
better?



Aside: Why is this difficult?

Well-known theoretical limitations

● In short, you CANNOT have a “fast and reliable” distributed ACID system.
○ Two Generals Problem [Gray ‘78]
○ CAP Theorem [Brewer ‘00, Gilbert ‘02]
○ Coordination Avoidance in Database Systems [Bailis ‘15] 

● We covered this last lecture
○ Many use cases regress to using “NoSQL” systems with more 

scalability but less guarantees



Why bother with distributed transactions then?

● Really powerful abstraction

● Extremely useful

● Impossibilities are mathematical. We are here to build systems*.

* Often called “NewSQL” systems



Attempt 1: H-Store 

● Large collaborative project @ MIT (among other places) .

● Distributed & main-memory

● Commercialized as VoltDB



How to make transaction processing 
databases 10x faster?

● Eliminate
○ Disk I/O
○ Locking
○ Concurrency Control
○ Disk based recovery

● Sounds nuts, but going to show how we
○ Do this while preserving transactional guarantees
○ Get massive scalability, even on multicores

Disk-based 
system
overhead

Multi-thread 
concurrency
overhead



No Disk
● Horizontally partition into RAM-sized chunks

○ Most OLTP workloads partition nearly perfectly
■ E.g., in Amazon, almost all transactions begin with a  customer
■ Also true of TPC-C, Ebay, travel sites, banking, etc.

○ Most OLTP databases easily fit into the aggregate RAM of a cluster

● Replicate for durability
○ If one site crashes, another has data

Image courtesy of Prof. Andy Pavlo



No Concurrency Control

● Single-threaded execution
○ Only execute one transaction at a time
○ All transactions “one shot” stored procedures

■ No user stalls / “think time”
○ Concurrent transactions needed to mask I/O latency

■ Unneeded if every transaction takes 100 us and there are no disk, 
network, or user stalls

● Fall back on 2PC for multi-site transactions

Remember, database is in memory and most transactions 
can be answered at a single partition!

Debit(A, B, amt):
UPDATE accts SET bal = bal - amt
WHERE acct_no = $A$
UPDATE accts SET bal = bal + amt
WHERE acct_no = $B$

Example stored procedure:



No Disk-based Logging

● Recover from replicas
○ By copying state on crash
○ Possible to asynchronously checkpoint to disk 

● May need in-memory logs for transaction undo



Is this reasonable?

Specialized for OLTP (Online Transaction Processing) workload

● Transactions access a few records

● Transaction templates are known beforehand

● Working set fits in memory

● Data is (mostly) partitioned



Example: TPC-C

● Standardized benchmark used by everyone
● Models a warehouse order processing system
● Several types of transaction issued at random
● E.g. NewOrder Transaction:

○ Check item stock level
○ Create a new order
○ Update item stock level

Small set of pre-declared transactions



H-Store: Performance

• Vanilla H-Store ran 70K TPC-C txns
• At the time:

• MySQL ~1K on similar hardware

• At the time, TPC-C record was about 133 K txn/s on a 128 core server.
• H-Store achieved half of that on low-end desktops.



H-Store: Partitioning

● H-Store performance hinges on percentage of one-site txns
● Huge win if we can maximize one-site probability
● Intelligent partitioning required



H-Store: Speculative Execution 

● Recall: H-Store single-threaded

● Problem: 2PC takes > 10 ms to complete

● If lots of 2PC, performance suffers

● In vanilla H-Store partition simply waits out the 10ms instead of doing work



H-Store: Speculative Execution

● Observation: Most transactions succeed

● Idea: Assume transaction succeeds. Forge ahead but don’t release 
speculative results.

● Problem: introduces concurrency, but must not add overhead

Evan P.C. Jones, Daniel J Abadi, Samuel 
Madden. Low Overhead Concurrency 
Control for Partitioned Main Memory 
Databases. SIGMOD 2010



H-Store: Speculative Execution

● Idea: Speculate when waiting for 2PC outcome (e.g., after the transaction 
has completed)

○ No locks required
○ Local transactions execute assuming 2PC will complete
○ Results held back until 2PC finishes

○ Record undo information in-memory

○ If 2PC fails, all speculated transactions fail

○ Paper explores several other models



H-Store: Speculative Execution

● Synthetic benchmark ---
single operation 
transactions

● Baseline no conflict Vanilla H-Store

Specialized 



Attempt 2: Calvin / Aria

● Why is H-Store faster without concurrency?

● No non-determinism from threading
○ Limits cross thread/node coordination need
○ Coordination often a bottleneck

● Can the same idea be applied to truly distributed transactions?



Key Idea: Calvin

● Have a global deterministic ordering of transaction execution.

● Take the input and execute anywhere. Get the same result.

Alexander Thomson et. al. Calvin: Fast 
Distributed Transactions for Partitioned 
Database Systems. SIGMOD 2012.



Deterministic Transactions

Client Client Client

T1

T2

T3

External 
Sequencer

Sequencer only 
issues 
transactions that 
don’t conflict



Deterministic Transactions

● Observe: this is not so different from 2PL, where execution is equivalent to a serial schedule

● However: Calvin fixes the schedule before execution, so no locking required

● Assuming we only issue concurrent transactions that don’t conflict

● Therefore: coordination also largely done before execution

● Avoids 2PC because no deadlocks;  if a node fails it can simply re-run transactions in pre-
determined order



Practical Considerations

● Sequencer needs to know which items a transaction will access
● Hard!  What about

UPDATE sal = sal * 1.05 WHERE sal < 50k
● Locks that are needed are data dependent

● Sequencer is a bottleneck of the system and single-point of failure

● We still want concurrency for performance on a single node

● Need to be recoverable / durable



Practical Considerations

● Sequencer is a bottleneck of the system and single-point of failure

● We still want concurrency for performance on a single node

● Need to be recoverable / durable



Sequencer: Initial Attempt

Client Client Client

T1

T2

T3

Special Node
Attached 
Storage



Sequencer: Initial Attempt

Client Client Client

Special 
Node

● Special node failure difficult to handle

● Txn throughput bottlenecked by special node 
throughput



Distributed Sequencer

Sequencer Sequencer Sequencer

Client

● Don’t synchronize for every 
request

● Each sequencer collects a 
batch of requests

● Periodically replicate / persist 
and exchange batches



Practical Considerations

● Sequencer is a bottleneck of the system and single-point of failure

● We still want concurrency for performance on a single node

● Need to be recoverable / durable



Scheduler: Deterministic Concurrency Control
Consider Schedule: 

Read A, Write B Read C Write D

● No actual conflict
● No reason to execute in-order
● Challenge: concurrent execution that preserves deterministic schedule

BAD
T1 T2 T3



Scheduler: Deterministic Concurrency Control

● Need to allow for concurrent execution

● However, concurrent execution has to follow predetermined schedule



Scheduler: Deterministic Concurrency Control

● Similar to 2 PL

● Allow arbitrary concurrent execution permitted by lock manager

● However, control how locks are granted 



Scheduler: Deterministic Concurrency Control

T1 T2 T3 T4 T5 T6

Lock Thread

Lock Table

Deterministic Schedule

● Don’t request locks, grant locks.

● Dedicated lock thread assigns 
locks strictly in predetermined 
order

● Transaction executes when all 
locks are granted

● Assumption: read/write set 
known / can be determined 
before execution



Practical Considerations

● Sequencer is a bottleneck of the system and single-point of failure

● We still want concurrency for performance on a single node

● Need to be recoverable / durable



Logging and Checkpoints

● Transactions still need to be durable;  since we don’t want to FORCE after 
every command, need to have a way to redo work

● Because deterministic: 
● Can just log commands and the order they execute in
● No undo logging required

● No deadlocks / node-generated aborts

● Checkpointing needed
○ Otherwise, on failure, have to replay from the beginning of time
○ Need a way to take transaction-consistent snapshots



Calvin: Results

● TPC-C (100% New Order)



Calvin: Results

● Synthetic 
Microbenchmark



Calvin: Criticism

● Transaction read/write sets must be known beforehand

● Not always practical



Aria: Practical Deterministic OLTP

● Relaxes the requirement to know R/W sets beforehand

● Speculatively execute first, repair later

● Details omitted

Yi Lu, Xiangyao Yu, Lei Cao, Samuel 
Madden. Aria: A Fast and Practical 
Deterministic OLTP Database. VLDB 2020.



Takeaways

● Determinism can be a good thing

● Distributed coordination off the critical path = win



What have we achieved?

● A class of new transactional systems (aka. NewSQL) that retains the strong 
guarantees of traditional relational DBMS, while being much more scalable 
and performant like NoSQL systems

○ These systems are largely main-memory systems
○ These system optimize around partitioning and sharding for 

performance
○ These system feature new, interesting concurrency control / distributed 

commit schemes

○ Txn throughput went from a couple of thousands to millions per second



Criticism



Criticism

● Do we really need many more transactions per second?
○ In most enterprises, general purpose OLTP (e.g., 

Postgres / MySQL) are fine
○ Some extremes: 750 M req/s on China’s 11/11 

Single’s Day
○ Most of this workload embarrassingly parallel

● Are these new algorithms practical?
○ Assumptions, e.g., all data in RAM, replicas for 

recoverability, write sets known requires specialized 
use cases and assumptions

○ Often easier to just use a general-purpose system



Transactions in the Cloud

● Several differences
○ Failures common

○ Must replicate across availability zones and even data centers

○ Highly-available shared object storage (e.g., S3) exists
○ Desire for “pay as you go” scaling

● A number of new “cloud-native” database systems have emerged
○ E.g., AWS Aurora, Snowflake, SingleStore, FoundationDB, etc.
○ Build on top of existing cloud storage services in “shared-disk” fashion
○ Most separate compute and storage for flexibility



Cloud-native OLTP

● Key Idea: Storage & Compute Separation
○ Use cloud object storage (e.g., S3) for persistent storage layer
○ Attach ephemeral machines to storage when needed
○ Allows for separate scaling of resources 

● Key Challenge: Performance
○ Object storage is often slow & over the network (upwards of 10ms 

instead of hundreds of microseconds of fast SSDs, and often rate-
limited to tens of MBs per second)



Example: Amazon Aurora

● Idea: take existing DBMS (e.g., 
PostgreSQL), and replace the storage layer

● Optimized storage layer to reduce commit 
latency and materialize pages in S3 using 
logging

● Data distributed across multiple storage 
nodes for read performance and high 
availability

● Avoids use of 2PC by using quorum writes

“Primary”
MySQL or Postgres 

Front End

Storage nodes



Aurora Execution

On write, storage node:
 (1) receives redo records, 
 (2) appends them to an update queue, acks
In background, the storage node 
 (3) sorts and groups records, 
 (4) gossips with peers to fill in missing records, 
 (5) coalesces them into data blocks, 
 (6) backs them up to S3, 
 (7) garbage collects backed-up data 
 (8) periodically verifies checksums continue to match the data on disk. 



Storage
• Every write is structured as a REDO log, with a unique LSN

○ Storage nodes flush blocks to S3 asynchronously
• Data is partitioned into segments, which are replicated
• Different segments may be on different replica sets
• Each segment has a separate log

Primary

Segment1: SN1, SN2, SN4

Segment2: SN1, SN3, SN5

Segment3: SN3, SN5, SN5

SN1

SN5SN3 SN4

SN2
T1:
WA
WB
WC

WA
WB

WC



Log Processing
• Every write (log record) has an LSN, generated by primary
• Storage nodes process log writes in order

○ Stall if missing a block
• If a storage node is missing some log, it gossips with other nodes to fill in holes

Log blocks



Quorum Writes

• Rather than writing all replicas, primary 
writes to a quorum

• Allows survival of failure of one or more 
replicas

• Typically, Aurora uses N=6, W=4, meaning 
it can tolerate the failure of 2 replicas.  

○ Replicas are spread across 3 
availability zones

○ Tolerating 2 failures allows one AZ to 
be down and one other failure



Reads

• Aurora does not need to do quorum reads, because of the use of a primary
○ Either data is in cache
○ Or it knows which replicas have the most current version of each block

■ Since it coordinates all of the writes

https://dl.acm.org/doi/10.1145/3183713.3196937



Commit

• Transactions may write data stored in different segments 
• Since segments are on different replica sets, seems to require 2PC
• However:

○ Primary does concurrency control, properly sequences writes
■ No deadlocks will be generated on storage nodes

○ Quorum writes ensure that replica sets will not fail
■ As long as a quorum of nodes stays up

è 2PC isn’t required
○ Commit point is when primary’s log has been replicated

■ Log is stored on one replica set

• Recovery of primary is somewhat complicated;  see paper

https://dl.acm.org/doi/10.1145/3183713.3196937



Performance

• Despite 4x+ write amplification, 
performance is good because:

○ Writes append to REDO log;  no 
synchronous block writes

○ Data is spread across many 
storage nodes, allowing for high 
concurrency

○ No 2PC required for commit
○ No read amplification

Aurora vs. MySQL on EBS (cloud storage)

Aurora is higher throughput and lower 
latency, because of use of log shipping and 
scalable backend



Takeaways

● Transactions have come a long way since the classical 
2PL + ARIES + 2PC 

● A host of new systems leveraging workload 
specialization and other clever insights to boost 
transactional performance by many orders of 
magnitude

○ Whether all of this speed-up is needed is 
debatable

○ Regardless, many of the innovations run in 
production today

● Transaction research is alive and well in new settings 
such as the autoscaling cloud A Scaly Cloud


