
Cluster Computing: Spark
Some slides from Mosharaf Chowdhury, Sam Madden

1

”Steel Industry”, fresco in Pittsburgh US Courthouse and Post Office,
Howard Norton Cook, 1936

“metal sparks industry in heroic
early 20th century style”, Stable
Diffusion, November 26, 2022

DALLE 3

2

”Steel Industry”, fresco in Pittsburgh US
Courthouse and Post Office,
Howard Norton Cook, 1936

“metal sparks industry in heroic
early 20th century style”, Stable
Diffusion, November 26, 2022

same prompt, DALL-E 3, 2023

GPT-4, November 17, 2024

3

4

Where Are We???

“Classic DB”

Row Store,

Selinger

Optimizer, 2PL

+ 2PC,

ARIES

DBs for Analytics

DBs for Transaction

Processing

DBs for the Cloud

Highly Available DBs

Systems for Data

Science

DBs for Cloud Analytics

Specializa
tio

n

C-Store

H-Store

Calvin

DynamoDB

Aurora

Spark

SnowflakeFirst 18 lectures
DBs for AI

Today

• Data Systems for “Data Science”
• Efficient Parallel Execution for “One Off” Data Processing Tasks

• E.g., featurization for ML, indexing data, extracting information from data, etc

• Often involving unstructured → structured data conversion

• E.g., processing a set of text document into an inverted index of words and their locations in
the documents

• Not really SQL, but a set of parallel operations that are reminiscent of SQL filters
and joins

• MapReduce/Hadoop, briefly, and then Spark

6

MapReduce: programming model for processing
large data sets across a distributed cluster.

• Programmer specifies:
Map Function:

- Processes input key/value pairs to generate intermediate key/value pairs.

Reduce Function:
- Merges all intermediate values associated with the same intermediate key.

7

Map Function

def map(key, value):

 for word in value.split():

 emit(word, 1)

Reduce Function

def reduce(key, values):

 total_count = sum(values)

 emit(key, total_count)

Example Input: [('doc1', 'hello world'), ('doc2', 'hello mapreduce’)]

MapReduce Process Execution

Example Output: [('hello', 2), ('world', 1), ('mapreduce', 1)]

MapReduce Execution

• Input Splitting:
• Data is divided into chunks for the map tasks.

• Mapping:
• Each chunk is processed by a map task independently.

• Shuffling:
• Intermediate key/value pairs are sorted and grouped by key.

• Reducing:
• Each group of intermediate values is processed by a reduce task.

• Output:
• Final output is generated from the reduce tasks.

8

Worker 1
doc1

Worker 2
doc2

Worker 3 Worker 4

map(doc1)

Hello, 1

Hello, 1

Hello, 1

Hello, 1
World, 1

MapReduce, 1

World, 1

MapReduce, 1reduce()

Hello, 2
World, 1
MapReduce, 1

map(doc2)

Shuffle

reduce(

)

Motivation & Background

• Pros:
• Allowed parallel computation without

worrying low level details (e.g., work
distribution, fault tolerance)

• Provided a set of high-level operations
(map, reduce)

• You didn’t have to think about
schemas

9

• Cons:
• Little to no support for leveraging

cluster memory

• Large overhead for reusing data
in iterative or interactive tasks
(I/O, replication, serialization)

• You didn’t have to think about
schemas

• Implementations had bad latency

Frameworks back in 2012:
MapReduce, a bit of Microsoft’s Dryad

Spark: Resilient Distributed Datasets (RDDs)

• Utilize Distributed Memory while providing efficient fault tolerance
• Avoid storing data updates explicitly
• Instead, obtain fault tolerance by logging transformations (lineage)

• Limit operations to coarse-grained transformations (e.g., map, filter)

• Allow user control of data persistence, partitioning, and caching

• How did MapReduce obtain fault tolerance?

10

RDDs

• Read-only, partitioned collection of records

• Created from either data in stable storage or other RDDs

• A sequence of transformations defines an RDD:
• Map, filter, flatmap, sample, groupbykey, reducebykey, join, union

• Actions return value or export data to storage system
• count, collect, save, reduce, lookup

• No need to actually run code until there’s an action

• Read-only means we can exploit speculative (re)execution
• MapReduce also does this

11

Example: Console Log Mining

lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

errors.count()

12

HDFS File

Base RDD: lines

Transformed RDD: errors

Number of lines with ERROR

definition

Transformation: filter

Action: count

RDDs: Fault Tolerance

• Lineage: transformations used to build a dataset

• Recover lost partition by applying lineage from corresponding data
partition in stable storage

• Because data is read-only, this is always possible

13

Limit operations to coarse-grained transformations and only log the
transformations instead of replicating data for recovering

Example: Console Log Mining

lines = spark.textFile("hdfs://...")

errors = lines.filter(_.startsWith("ERROR"))

errors.count()

14

HDFS File

Base RDD: lines

Transformed RDD: errors

Number of lines with ERROR

definition

Transformation: filter

Action: count

“Base RDD” and “Transformed RDD” may never be actually stored on disk

Worker 1

Worker
3

Worker 2

Coordinator

p3p2p1

RDD 2

p1 p2 p3

RDD 3

p3p2p1

RDD 1b

p3p2p1

RDD 0

p3p1

RDD 1a

p2

Example

15

4 RDDs
3 partitions. (e.g., all p1s are on worker 1)
What’s a possible program that leads to this dataflow?
Take a minute.

Worker 1

Worker
3

Worker 2

Coordinator

p3p2p1

RDD 2

p1 p2 p3

RDD 3

p3p2p1

RDD 1b

p3p2p1

RDD 0

p3p1

RDD 1a

p2

Example

16

employeeIds = spark.textFile("hdfs://...")
names = map(# map from ID to name)
salaries = map(# map from ID to salary)
fullEmps = join(# names, salaries on empId)
execs = fullEmps.filter(# filter on salary)

employeeids

names

salaries

fullEmps

execs

Worker 1

Worker
3

Worker 2

Coordinator

p3p2p1

RDD 2

p1 p2 p3

RDD 3

p3p2p1

RDD 1b

p3p2p1

RDD 0

p3p1

RDD 1a

p2

Example

17

Worker 1

Worker
3

Worker 2

p3p2p1

RDD 2

p1 p2 p3

RDD 3

p3p2p1

RDD 1b

p3p2p1

RDD 0

p3p1

RDD 1a

p2

Example

18

Coordinator

Worker 1

Worker
3

Worker 2

p3p2p1

RDD 2

p1 p2 p3

RDD 3

p3p2p1

RDD 1b

p3p2p1

RDD 0

p3p1

RDD 1a

p2

Example

19

Coordinator

Worker 1

Worker
3

Worker 2

p3p2p1

RDD 2

p1 p2 p3

RDD 3

p3p2p1

RDD 1b

p3p2p1

RDD 0

p3p1

RDD 1a

p2

Example

20

Coordinator

Worker 1

Worker
3

Worker 2

p3p2p1

RDD 2

p1 p2 p3

RDD 3

p3p2p1

RDD 1b

p3p2p1

RDD 0

p3p1

RDD 1a

p2

Example

21

Coordinator

Worker 1

Worker
3

Worker 2

p3p2p1

RDD 2

p1 p2 p3

RDD 3

p3p2p1

RDD 1b

p3p2p1

RDD 0

p3p1

RDD 1a

p2

Example

22

Coordinator

RDDs

23

• User can control
• Persistence: indicate storage strategy (e.g. in-memory)

• Partitioning: placement optimization (e.g. hash partitioning)

Example : PageRank

24

• PageRank is an iterative algorithm
for computing rank (centrality) of
web graph nodes

• The PageRank paper shows that if
you keep recomputing this value
then the quantities will converge

• The size of the lineage graph
depends on how many iterations
you perform

TRY IT! Don’t look at the next slide!
Try to write down pseudocode for implementing PageRank
In terms of join, map, and reduce

Pages that link to pi

Damping factor

Number of links from pj

Number of documents

Page rank of pi

val links = spark.textFile(...).map

var ranks = // RDD of (URL, rank) pairs, initialized to 1

25

val links = spark.textFile(...).map(...).persist()

var ranks = // RDD of (URL, rank) pairs, initialized to 1

for (i <- 1 to ITERATIONS) {

 // Build an RDD of (targetURL, float) pairs

 // with the contributions sent by each page

 val contribs = links.join(ranks).flatMap {

 (url, (links, rank)) =>

 links.map(dest => (dest, rank/links.size))

 }

 // Sum contributions by URL and get new ranks

 ranks = contribs.reduceByKey((x,y) => x+y)

 .mapValues(sum => 1-d/N + (d)*sum)

}

URL Link

http://a http://b

http://b http://c

http://c http://a

http://a http://c

26

Ranks

(http://a,1)

(http://1,1)

(http://c,1)

val contribs = links.join(ranks).flatMap {

 (url, (links, rank)) =>

 links.map(dest => (dest, rank/links.size))

 }

(a, b) => (a + b)
Defines a function that takes
two parameters a and b and
sums them

URL Links Rank

http://a {http://b, http://c} 1

http://b {http://c} 1

http://c {http://a} 1

27

val contribs = links.join(ranks).flatMap {

 (url, (links, rank)) =>

 links.map(dest => (dest, rank/links.size))

 }

(a, b) => (a + b)
Defines a function that takes
two parameters a and b and
sums them

URL Links Rank

http://a {http://b, http://c} 1

http://b {http://c} 1

http://c {http://a} 1

29

val contribs = links.join(ranks).flatMap {

 (url, (links, rank)) =>

 links.map(dest => (dest, rank/links.size))

 }

Apply function to it

The function maps over link in row’s links set

(a, b) => (a + b)
Defines a function that takes
two parameters a and b and
sums them

http://a {http://b, http://c} 1

Apply map() to both of these

{(http://b, 1/2), (http://c, 1/2)}

{(http://b, 1/2), (http://c, 1/2)}

{(http://c, 1)}

{(http://a, 1)}

(http://b, 1/2)

(http://c, 1/2)

(http://c, 1)

(http://a, 1)

Example

Inner map on each row

Flattened

For each row in join

30

(a, b) => (a + b)
Defines a function that takes
two parameters a and b and
sums them

(http://b, .5)

(http://c, .5)

(http://c, 1)

(http://a, 1)

// Sum contributions by URL and get new ranks

 ranks = contribs.reduceByKey((x,y) => x+y)

 .mapValues(sum => 1-d/N + (d)*sum)

(http://a, 1)

(http://b, .5)

(http://c, 1.5)

Apply x+y to combine rows that have the
same key

(http://a, .1 + .7 = .8)

(http://b, .1 + .35 = .45)

(http://c, .1 + 1.05 = 1.15)

d = .7; 1-d/N = .1

Compute the weighted rank

New ranks table; b is weighted less because only
a links to it, and a links to 2 pages. c is weighted
more because both a and b link to it.

PageRank Challenges

31

What problems might we face, failure-wise, that we wouldn’t
face if we wrote similar code with MapReduce?

Take a minute

What problems might we face, runtime-wise, if we implement
this naïvely?

Take a minute

PageRank Challenges

32

What problems might we face, failure-wise, that we wouldn’t
face if we wrote similar code with MapReduce?

Very long lineage chain for ranks; slow. Soln: Use explicit persistence to avoid
having to regenerate ranks from lineage (not necessary for links)

What problems might we face, runtime-wise, if we implement
this naïvely?

Very slow joins. Soln: Partition both links and ranks in the same
way, so joins always happen on a single machine.

Example : PageRank

33

PageRank with hash
partitioning

facebook.com google.com mit.edu

facebook.com google.com mit.edufacebook.com google.com mit.edu

facebook.com google.com mit.edu

facebook.com google.com mit.edu

PageRank without
partitioning

Use Spark support for controlling partitioning!

Partition rank and corresponding links on the same
machine to eliminate cross-machine communication

Links Ranks

RDD Representation

• Partitions: atomic pieces of the RDD

• Dependencies: relations with parent
RDDs

• Narrow Dependencies: A parent RDD
partition is used by at most one child
partition (e.g. map, filter). Can be pipelined

• Wide Dependencies: A parent RDD
partition is used by multiple child partitions
(e.g. join, groupByKey). Need internode
communication

34

Job Scheduling

• Build DAG of stages to execute

• Each stage contains as much as possible
pipelined transformations with narrow
dependencies

• Stages are linked by wide dependencies

• Assign tasks based on data locality

• Execute tasks when their inputs are ready

35

Fault Tolerance

• Task failures
• Stage’s parents available: rerun on another node

• Some stages unavailable: resubmit tasks to compute missing partitions in parallel

• Does not tolerate scheduler failures

• Solution: Lineage graph replication

3737

Memory Management

• Three storage strategies:
• In-memory storage as deserialized Java objects,

(fastest performance, since JVM can access each RDD element natively)

• In-memory storage as serialized data,
(more memory-efficient than Java object graphs, useful when space is limited)

• On-disk storage
(useful when RDDs are larger than RAM, but expensive to recompute from
lineage)

• LRU policy for eviction at RDD level when there is not enough RAM
• Or, use user-specified “persistence priority” for eviction

38

Checkpointing and Failures with Spark

• Short lineage chain?
• Just recompute from lineage

• Long lineage chain with narrow dependencies?
• Fast to recompute from lineage using pipelined execution

• Long lineage chain with wide dependencies?
• This can be time-consuming. A node failure might require recomputing

everything!
• Use persistence as a checkpoint to prevent long recoveries

• A lot more is left to the user than with MapReduce or RDBMS

39

Performance: Iterative Machine Learning

40

• K-Means and Logistic
Regression

• Experiment Setup:
• 10 iterations

• 10GB datasets

• 25-100 machines

Note: HadoopBM in its first iteration converts text input data to a more efficient binary format

Performance: Iterative Machine Learning

41

Failure and Recovery

42

Spark and MapReduce

• Spark has pretty much taken over “large-scale arbitrary compute
jobs” from MapReduce

• Are there any advantages to MapReduce? Not really; you can express
a MapReduce program almost exactly using Spark

43

Spark and RDBMS

• Spark doesn’t have anything to say about transactions

• Spark has more optimization opportunities than MapReduce, but
they’re still mostly manual. Nothing like RDBMS optimizer (is it even
possible with Spark?)

• Some room for exploiting RDBMS techniques, like joins
• (Certainly, more room than with MapReduce)

• Scala programs or SQL queries?

• Spark SQL exists as SQL layer, much like Hive for MapReduce

• Likely prefer a RDBMS for updates or data that is re-accessed
frequently.

44

45

Abstract representation of a RDBMS
fighting the Spark system high fantasy
photorealistic render

	Slide 1: Cluster Computing: Spark Some slides from Mosharaf Chowdhury, Sam Madden
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Where Are We???
	Slide 6: Today
	Slide 7: MapReduce: programming model for processing large data sets across a distributed cluster.
	Slide 8: MapReduce Execution
	Slide 9: Motivation & Background
	Slide 10: Spark: Resilient Distributed Datasets (RDDs)
	Slide 11: RDDs
	Slide 12: Example: Console Log Mining
	Slide 13: RDDs: Fault Tolerance
	Slide 14: Example: Console Log Mining
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: RDDs
	Slide 24: Example : PageRank
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31: PageRank Challenges
	Slide 32: PageRank Challenges
	Slide 33: Example : PageRank
	Slide 34: RDD Representation
	Slide 35: Job Scheduling
	Slide 37: Fault Tolerance
	Slide 38: Memory Management
	Slide 39: Checkpointing and Failures with Spark
	Slide 40: Performance: Iterative Machine Learning
	Slide 41: Performance: Iterative Machine Learning
	Slide 42: Failure and Recovery
	Slide 43: Spark and MapReduce
	Slide 44: Spark and RDBMS
	Slide 45

