
1

Model of Leonardo’s Mechanical
Knight, original design from 1495

December 4, 2024

Databases for

Artificial

Intelligence

Where Are We???

“Classic DB”

Row Store,

Selinger

Optimizer, 2PL

+ 2PC,

ARIES

DBs for Analytics

DBs for Transaction

Processing

DBs for the Cloud

Highly Available DBs

Systems for Data

Science

DBs for Cloud Analytics

Specializa
tio

n

C-Store

H-Store

Calvin

DynamoDB

Aurora

Spark

Snowflake
First 18 lectures

DBs for AI
Palimpzest!!!

AI Foundation Models are Full of Promise

● Chat is fun, but foundation models are incredible potential building blocks for apps that

fluidly mix AI and data processing

All of these have traditionally been very difficult to engineer

And Are Still Underexploited

● Chat is fun, but foundation models are incredible potential building blocks for apps that

fluidly mix AI and data processing

● All of these have traditionally been very difficult to engineer

Data Integration Multimodal Document Compliance

Data Cleaning Next-Generation Dashboards

Information Extraction Log-Driven System Diagnosis

Long Document Understanding Data-Driven Digital Twins

Multimodal Scientific Discovery … and many others

AI+Data Programs Can Be Thrilling…

Scientific Discovery: “Find all the materials science
papers that talk about EV batteries”

Multimodal Document Processing: “Double-check all
the facts in this mortgage application”

Effective Government: “Find all US banks’ SEC filings in
2022 and extract footnotes that talk about solvency”

…but AI Programming is a Drag

Make it fast, cheap, and high quality

While also models, GPUs, and AI methods evolve

While also project needs change over time

…but AI Programming is a Drag

Make it fast, cheap, and high quality

While models, GPUs, and AI methods change every day

While also models, GPUs, and AI methods evolve

While also project needs change over time

…but AI Programming is a Drag

Make it fast, cheap, and high quality

While models, GPUs, and AI methods change every day

While project needs change over time

While also models, GPUs, and AI methods evolve

While also project needs change over time

…but AI Programming is a Drag

Make it fast, cheap, and high quality

While models, GPUs, and AI methods change every day

While project needs change over time

And keep spending flat (at least predictable)

While also models, GPUs, and AI methods evolve

While also project needs change over time

The Good News

● We’ve solved a problem like this before!

● In the mid-1970s, database programmers had

to write custom code for every query

● Declarative queries allowed them to write

succinct programs while also obtaining good

performance in a rapidly-changing

technological environment

● Let’s do the same for AI applications

Our System: Palimpzest

● Python package that lets users

implement AI tasks in little code

● Behind the scenes, it hypothesizes and

tests 1000s of ways to use AI models to

implement user’s goal

● It chooses the fastest, cheapest,

highest-quality option. When models

or prices or hardware change, it will

choose differently

[“Palimpzest: Optimizing AI-Powered Analytics with Declarative Query Processing”, CIDR 25]

Sample AI Application: Real Estate Search

Collect real estate listings; images and text

Sample AI Application: Real Estate Search

Collect real estate listings; images and text

Make sure the listing is in my price range

Make sure the listing is within 2 miles of MIT

Make sure it is “modern and attractive” and
”has natural sunlight”

Sample AI Application: Real Estate Search

Collect real estate listings; images and text

Make sure the listing is in my price range

Make sure the listing is within 2 miles of MIT

Make sure it is “modern and attractive” and
”has natural sunlight”

Output the results

Demo AI Application: Multimodal Real Estate Search
Core PZ code

listings = pz.Dataset("real-estate-tiny", schema=RealEstateListingFiles)

listings = listings.convert(TextRealEstateListing, depends_on="text_content")

listings = listings.convert(ImageRealEstateListing, image_conversion=True,

depends_on="image_contents")

listings = listings.filterByStr(

"The interior is modern and attractive, and has lots of natural sunlight",

depends_on=["is_modern_and_attractive", "has_natural_sunlight"]

)

listings = listings.filterByFn(within_two_miles_of_mit, depends_on="address")

listings = listings.filterByFn(in_price_range, depends_on="price")

policy = pz.MaxQuality()

results, plan = pz.Execute(listings, policy, num_samples=2,

nocache=True, verbose=True)

Demo AI Application: Multimodal Real Estate Search
Core PZ code

listings = pz.Dataset("real-estate-tiny", schema=RealEstateListingFiles)

listings = listings.convert(TextRealEstateListing, depends_on="text_content")

listings = listings.convert(ImageRealEstateListing, image_conversion=True,

depends_on="image_contents")

listings = listings.filterByStr(

"The interior is modern and attractive, and has lots of natural sunlight",

depends_on=["is_modern_and_attractive", "has_natural_sunlight"]

)

listings = listings.filterByFn(within_two_miles_of_mit, depends_on="address")

listings = listings.filterByFn(in_price_range, depends_on="price")

policy = pz.MaxQuality()

results, plan = pz.Execute(listings, policy, num_samples=2,

nocache=True, verbose=True)

About 14 lines of interesting code, plus

some boilerplate

No prompt-writing, data labeling, or

profound AI insight needed

Palimpzest Internals

Palimpzest Internals

Execution Fabric

Physical Operators

Logical Operations

Python Code

Palimpzest Internals

Execution Fabric

Physical Operators

Logical Operations

Python Code

Palimpzest Internals

Execution Fabric

Physical Operators

Logical Operations

Python Code Model
Selection

Code
Synthesis

Multi-data
Prompt

Marshaling

Token
Reduction

Token Reduction: Ideal Pipeline

Phosphorylation of Exo1 modulates homologous recombination r epair of DNA
double-strand breaks.

Emma Bolderson¹, Nozomi Tomimatsu², Derek J. Richar d¹, Didier Bouc her¹,
Rakesh Kumar³, Tej K. Pandita³, Sandeep Burma² and Kum Kum Khanna¹*
¹Signal Transduction Laboratory, Queensland Insti tute of Medical Resear ch,
Brisbane, Queensland 4029, Australia, ²Depar tment of Radiation Oncology, UT
Southwestern Medical Center at Dallas, Dallas, TX 75390-9187, ³Department of
Radiation Oncology, Washington University School of Medic ine, St. Louis, MO
63108, U SA Received Oc tober 22, 2009; Revised November 18, 2009; Accepted
November 24, 2009

ABSTRACT DNA double-strand break (DS B) repair v ia the homologous
recombination pathway is a multi-stage process, which results in r epair of the
DS B without loss of genetic information or fidel ity. One essential step in this
process is the gener ation of extended single -stranded D NA (ssD NA) regions at
the break site. This ssD NA ser ves to induce cell cycle c heckpoints and is
required for Rad51 mediated strand invasion of the sister chromatid. Here, we
show that human Exonuclease 1 (Exo1) is requir ed for the normal repair of D SBs
by H R. Cells depleted of Exo1 show chr omosomal instability and
hypersensitivity to ionising r adiation (IR) exposure. We find that Exo1
accumulates r apidly at D SBs and is required for the recruitment of RPA and
Rad51 to si tes of DSBs, suggesting a role for Exo1 in ssDNA generation.
Interestingly, the phosphorylation of Exo1 by ATM appears to regulate the
activi ty of Exo1 following resection, allowing optimal Rad51 loading and the
completion of HR repair. These data establish a role for Exo1 in resec tion of
DS Bs in human cel ls, highlighting the cr itical requir ement of E xo1 for DSB
repair via H R and thus the maintenance of genomic stability.

INTROD UCTION D NA double-strand breaks (DSBs) c an be i nduc ed by a variety
of fac tors such as c hemotherapeutic agents, ionizing radiation (IR), or the
collapse of cellular metabolism. These breaks trigger a complex network of
signaling pathways involved in the detec tion...

Bolderson,
Tomimatsu,

Richard, Boucher,
Kumar, …

Paper PDF [Paper Text]

The paper text varies in its relevance to a given query. How can we find the relevant text

chunks beforehand?

Context：
[highlighted_text]
 Question: What
are the authors of
this paper?

LLM Prompt LLM Answer

Token Reduction Workflow

Validation
Set

User Question

Hot Sections of User Q

Optimal range:

Offline Sampling and Profiling

1. Comparable results

2. Lower $ cost

3. Lower runtime

4. Memory saving

Input: test document,
 max user budget

22

Palimpzest Internals

Execution Fabric

Physical Operators

Logical Operations

Python Code Model
Selection

Code
Synthesis

Multi-data
Prompt

Marshaling

Token
Reduction

Palimpzest Internals

Execution Fabric

Physical Operators

Logical Operations

Python Code Model
Cascades

Workload
Scheduling

Knowledge
Distillation

Mixture of
Agents

Palimpzest Internals

Execution Fabric

Physical Operators

Logical Operations

Python Code

The PZ optimizer enumerates

physical plans, estimates quality,

runtime, cost for each

It picks the plan that best matches

the user’s desired tradeoffs

Estimating quality is the hardest

part. Current implementation uses a

“champion model”

Prototype and Experiments

● Implemented in about 9800 lines of Python

● Claims:

○ Physical optimizations can produce better plans than a naïve program would obtain

○ The optimizer can successfully identify these plans

● Workloads:

○ Multimodal Real Estate Search (above task; 100 listings, both text and images; 14 LOC)

○ Legal Discovery (identify fraudulent intent; 1000 emails; 17 LOC)

○ Medical Schema Matching (reproduce a real-world data integration task for cancer

researchers; 11 spreadsheets with 49 tables; 30 LOC)

29

Good Physical Plans Exist

30

PZ Selects Good Plans

31

PZ Selects Good Plans

32

PZ Selects Good Plans

33

Biomedical Use Case: Literature Search
Example:

1. A researcher is investigating a concept, e.g., "Phosphorylation of
Exo1"
2. We filter papers in literature to find relevant mentions
3. We scan paper text to solve paper references
4. System returns the relevant text from referenced papers

Current implementation:
27 lines of user code
61% F1
~12s per document

Biomedical Use Case: Data Collection
Example:

1. A researcher is surveying all data available from the literature
2. The original papers report on different sources, may contain supplemental data
3. We scan the paper & identify all publicly available data (e.g., through DOI)
4. We automatically crawl and collect the data in a shared repository

Current implementation:
30 user lines of code
40% F1
~9s runtime per document

Biomedical Use Case: Data Harmonization
Example:

1. A researcher wants to run a longitudinal study from several sources
2. The original datasets contain relevant as well as irrelevant tables
3. First, system automatically identifies relevant data
4. Then, system merges data across sources matching columns and values

Current implementation:
35 user lines of code
46% F1
~26s runtime per table

Other Recent Systems

• Many existing RDBMSes (BigQuery, Databricks, Redshift) offer LLM UDFs

• Basic programming and optimization frameworks like LangChain, DSPy are
programmer-focused. They don’t offer a complete general-purpose query model

• Some systems are focused on information extraction: ZenDB, EVAPORATE

• LOTUS is a general-purpose system similar to Palimpzest. The query language is
dataframe-focused, has a different set of optimizations

• DocETL offers a query language tailored for large heterogeneous document
collections. Very different set of operators compared to PZ and LOTUS

37

Palimpzest is Basis of Many New Projects in DSG

The People Who Actually Did The Work

Peter Baille
Chen

Gerardo
Vitagliano

Zui
Chen

Chunwei Liu Matt Russo

Sylvia
Zhang

Rana
Shahout

Palimpzest is Basis of Many New Projects

Lei

Cao
Mike

Franklin
Tim

Kraska

Sam

Madden

Website: https://dsg.csail.mit.edu/projects/palimpzest/

Paper: https://arxiv.org/pdf/2405.14696

Demo: https://bit.ly/4c6vlcQ

Code: https://github.com/mitdbg/palimpzest

https://dsg.csail.mit.edu/projects/palimpzest/
https://arxiv.org/pdf/2405.14696
https://bit.ly/4c6vlcQ
https://github.com/mitdbg/palimpzest

	Slide 1
	Slide 2: Where Are We???
	Slide 3: AI Foundation Models are Full of Promise
	Slide 4: And Are Still Underexploited
	Slide 5: AI+Data Programs Can Be Thrilling…
	Slide 6: …but AI Programming is a Drag
	Slide 7: …but AI Programming is a Drag
	Slide 8: …but AI Programming is a Drag
	Slide 9: …but AI Programming is a Drag
	Slide 10: The Good News
	Slide 11: Our System: Palimpzest
	Slide 12: Sample AI Application: Real Estate Search
	Slide 13: Sample AI Application: Real Estate Search
	Slide 14: Sample AI Application: Real Estate Search
	Slide 15: Demo AI Application: Multimodal Real Estate Search
	Slide 16: Demo AI Application: Multimodal Real Estate Search
	Slide 17: Palimpzest Internals
	Slide 18: Palimpzest Internals
	Slide 19: Palimpzest Internals
	Slide 20: Palimpzest Internals
	Slide 21: Token Reduction: Ideal Pipeline
	Slide 22: Token Reduction Workflow
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Palimpzest Internals
	Slide 27: Palimpzest Internals
	Slide 28: Palimpzest Internals
	Slide 29: Prototype and Experiments
	Slide 30: Good Physical Plans Exist
	Slide 31: PZ Selects Good Plans
	Slide 32: PZ Selects Good Plans
	Slide 33: PZ Selects Good Plans
	Slide 34: Biomedical Use Case: Literature Search
	Slide 35: Biomedical Use Case: Data Collection
	Slide 36: Biomedical Use Case: Data Harmonization
	Slide 37: Other Recent Systems
	Slide 38: Palimpzest is Basis of Many New Projects in DSG
	Slide 39: The People Who Actually Did The Work
	Slide 40: Palimpzest is Basis of Many New Projects

