
6.5830 
Lecture 3

Tim Kraska

Key ideas:  
Advanced SQL 
Schema Design

http://dsg.csail.mit.edu/6.5830/

Lab 0 Due 
Lab 1 Out



Recap: Zoo Tables

aid name age species acageno

1 Sam 3 Salamander 1
2 Mike 12 Giraffe 1

3 Sally 1 Student 2

no feedtime bldg

1 12:30 1
2 1:30 2

id name

1 Jane
2 Joe

kid cageno

1 1
1 2
2 1

Animals

Cages

Keepers Keeps

Schema: 
Animals: (aid, name, age, species, acageno) 
Cages: (no, feedtime, bldg) 
Keepers: (id, name)

Primary key

Foreign Key

Keeps: (kid, cageno)



Recap: Relational Principles

• Simple representation 
• Set-oriented programming model that doesn't require "navigation" 
• No physical data model description required(!)



Recap: Relational Data Model
• All data is represented as tables of records (tuples) 
• Tables are unordered sets (no duplicates) 
• Database is one or more tables 
• Each relation has a schema that describes the types of the 

columns/fields 
• Each field is a primitive type -- not a set or relation 
• Physical representation/layout of data is not specified (no 

index types, nestings, etc)



Recap: Basic SQL structure 
[informal grammar]

SELECT [DISTINCT] selectExpression 
FROM tableExpression 
WHERE expression 
GROUP BY expression  
HAVING expression 
ORDER BY order 
LIMIT number

Note: You learn SQL by writing SQL and not through this lecture. The lecture only covers the high-level concept.  
Please use the PSETs and the thousands of online tutorial to learn it. For the quiz we care less about that the syntax  
is 100% correct but that you understand the concept of working with relations.



Recap: Relational Algebra
• “Algebra” – Closed under its own operations 

• Every expression over relations produces a relation 

• Projection (π(T,c1, …, cn)) 
• select a subset of columns c1 .. cn 

• Selection (𝛔(T, pred)) 
• select a subset of rows that satisfy pred 

• Cross Product (T1 x T2) 
• combine two tables 

• Join (⨝(T1, T2, pred)) = 𝛔(T1 x T2, pred) 
• combine two tables with a predicate 

• Set operations (UNION, DIFFERENCE, etc) 
 



Recap: Relational Algebra
• “Algebra” – Closed under its own operations 

• Every expression over relations produces a relation 

• Projection (π(T,c1, …, cn)) 
• select a subset of columns c1 .. cn 

• Selection (𝛔(T, pred)) 
• select a subset of rows that satisfy pred 

• Cross Product (T1 x T2) 
• combine two tables 

• Join (⨝(T1, T2, pred)) = 𝛔(T1 x T2, pred) 
• combine two tables with a predicate 

• Set operations (UNION, DIFFERENCE, etc) 
• Aggregate operation 



IMS v CODASYL v Relational
IMS CODASYL Relational

Many to many 
relationships 
without redundancy

❌ ✓ ✓
Declarative, non 
“navigational” 
programming

❌ ❌ ✓



IMS v CODASYL v Relational
IMS CODASYL Relational

Many to many 
relationships 
without redundancy

❌ ✓ ✓
Declarative, non 
“navigational” 
programming

❌ ❌ ✓
Physical data 
independence ❌ ❌ ✓



Physical Independence
Can change representation of data without needing to change code 

Example: 

SELECT a.name FROM animals AS a, cages AS c WHERE a.cageno = 
c.no AND c.bldg = 32

• Nothing about how animals or cages tables are represented is evident 
– Could be sorted, stored in a hash table / tree, etc 
– Changing physical representation will not change SQL 

• No specification of implementation 
• Both CODASYL and IMS expose representation-dependent operations in their query API



IMS v CODASYL v Relational
IMS CODASYL Relational

Many to many 
relationships 
without redundancy

❌ ✓ ✓
Declarative, non 
“navigational” 
programming

❌ ❌ ✓
Physical data 
independence ❌ ❌ ✓
Logical data 
independence ❌ ❌ ✓



Logical Data Independence
• What if I want to change the schema without changing the 

code? 
• No problem if just adding a column or table 
• Views allow us to map old schema to new schema, so old 

programs work 
– Even when changing existing fields



Key Idea: View
• View is a logical definition of a table in terms of other tables 

• E.g., a view computing animals per cage 

CREATE VIEW cage_count as ( 
	 SELECT cageno, count(*) 

	FROM animals JOIN cages ON cageno=no 
	GROUP by cageno 

) 

This view can be used just like a table in other queries



Views Example
• Suppose I want to add multiple feedtimes? 
• How to support old programs? 

– Rename existing animals table to animals2 
– Create feedtimes table 
– Copy feedtime data from animals2 
– Remove feedtime column from animals2 
– Create a view called animals that is a query over animals2 and feedtimes 

CREATE VIEW animals as ( 
SELECT id, name, age, species, cageno, 
	 (SELECT feedtime FROM feedtimes WHERE animalid = id  LIMIT 1) as feedtime 
	 FROM animals2 
)

id Name Feedtime …

1 Sam 1:30

2 Jenny 2:30

Animals Animals2

animalid Feedtime …

1 1:30

2 2:30

Feedtime

Note: in this example feedtimes are associated with animals, but 
they are associated with cages in the earlier DB



Correlated Subquery
SELECT id, name, age, species, cageno, 
	 (SELECT feedtime FROM feedtimes  
                  WHERE animalid = id  LIMIT 1) as feedtime 
FROM animals2 Doesn’t exist in feedtime table!

id Name Feedtime …

1 Sam 1:30

2 Jenny 2:30

animalid Feedtime …

1 1:30

2 2:30

Evaluated once for 
each animal in 
animals2 table

Return at most 1 feedtime

subquery

1:30

id name … feedtime

1 Sam 1:30

2 Jenny 2:30

2:30



Summary: IMS v CODASYL v Relational
IMS CODASYL Relational

Many to many 
relationships 
without redundancy

❌ ✓ ✓
Declarative, non 
“navigational” 
programming

❌ ❌ ✓
Physical data 
independence ❌ ❌ ✓
Logical data 
independence ❌ ❌ ✓

Next time: Fancy SQL



This Lecture

• Fancy SQL 
• Database Design and Normalization



Expanded Animal DB, as a Graph

Anant 
Kid=4

Jane 
Kid=1

Yuan 
Kid=3

Joe 
Kid=2

Cage1

Cage2

Cage3

Cage4

Cage5

1. Sam the 
Salamander  

2. Tim the Giraffe

4. Barry the Bear

3. Sally the 
Student

5. Turdy the 
Turtle

Keepers

Cages

6. Mork the Mink 
7. Ollie the Otter

Cage6



Cages in Building 32
• Imperative 

for each row a in animals
for each row c in cages

if a.acageno = c.no and c.bldg = 32
output a

• Declarative 
SELECT name 
FROM animals, cages
WHERE acageno = no AND bldg = 32

JOIN

NESTED 

LOOPS

SELECT name 
FROM animals JOIN cages on acageno = no 
WHERE bldg = 32

Alternate Syntax

Animals: (aid, name, age, species, acageno) 
Cages: (no, feedtime, bldg) 
Keepers: (id, name) 
Keeps: (kid, cageno) 



Aliases and Ambiguity
• Keepers who keep bears 
 

SELECT name 
FROM keepers JOIN keeps ON id = kid 
JOIN cages on cageno = no 
JOIN animals on acageno =no 
WHERE species = 'bear' 

This doesn’t work.  Why? 

Unclear which “name” we are 
referring to

Animals: (aid, name, age, species, acageno) 
Cages: (no, feedtime, bldg) 
Keepers: (id, name) 
Keeps: (kid, cageno)

4 table join 
((keepers ⨝ keeps) ⨝ cages) ⨝ animals

Keepers

Keeps

⨝ ⨝

Cages

⨝

Animals



Aliases and Ambiguity
• Keepers who keep bears 
 

SELECT animals.name 
FROM keepers JOIN keeps ON id = kid 
JOIN cages on cageno = no 
JOIN animals on acageno =no 
WHERE species = ‘bear’ 

This doesn’t work.  Why? 

Animals: (aid, name, age, species, acageno) 
Cages: (no, feedtime, bldg) 
Keepers: (id, name) 
Keeps: (kid, cageno)

4 table join 
((keepers ⨝ keeps) ⨝ cages) ⨝ animals

Keepers

Keeps

⨝ ⨝

Cages

⨝

Animals



https://clicker.mit.edu/6.8530/

Fill in the blank to complete this query to “find cages kept by Jane”? 
SELECT no FROM ____________ WHERE name = 'jane' 

A. keepers, cages 
B. keepers JOIN cages ON keepers.id = cages.no 
C. keepers JOIN keeps ON id = kid JOIN cages ON cageno = no 
D. cages JOIN keepers on keepers.id = cages.no JOIN keeps ON cageno = no

Animals: (aid, name, age, species, acageno) 
Cages: (no, feedtime, bldg) 
Keepers: (id, name) 
Keeps: (kid, cageno)



Aggregation

• Find the number of keepers of each cage 

SELECT no, count(*)  
FROM cages JOIN keeps ON no=cageno 
GROUP BY no 

• What about cages with 0 keepers?
Animals: (aid, name, age, species, acageno) 
Cages: (no, feedtime, bldg) 
Keepers: (id, name) 
Keeps: (kid, cageno)



Left Join?
• T1 LEFT JOIN T2 ON pred produces all rows in T1 x T2 that satisfy pred, plus all 

rows in T1 that don’t join with any row in T2 
• For those rows, fields of T2 are NULL 

Example: 
SELECT no, MAX(kid) 
FROM cages LEFT JOIN keeps  
ON no=cageno 
GROUP BY no

no …

1
2
3
4
5
6

no MAX

1 2
2 3
3 2
4 3
5 4
6 NULL

Can also use “RIGHT JOIN” and “FULL 
OUTER JOIN” to get all rows of T2 or all 
rows of both T1 and T2

kid cageno

1 1
1 2
2 1
3 2
3 4
2 3
4 5

cageskeeps

In relational algebra  
noGno,max(kid) (cages ⟕no=cageno keeps) 

noGno,max(kid) (cages      no=cageno keeps) 



Left Join?
• T1 LEFT JOIN T2 ON pred produces all rows in T1 x T2 that satisfy pred, plus all 

rows in T1 that don’t join with any row in T2 
• For those rows, fields of T2 are NULL 

Example: 
SELECT no, MAX(kid) 
FROM cages LEFT JOIN keeps  
ON no=cageno 
GROUP BY no

What about COUNT?

no …

1
2
3
4
5
6

no MAX

1 2
2 3
3 2
4 3
5 4
6 NULL

Can also use “RIGHT JOIN” and “OUTER 
JOIN” to get all rows of T2 or all rows of 
both T1 and T2

kid cageno

1 1
1 2
2 1
3 2
3 4
2 3
4 5

cageskeeps



Left Join?

no COUNT

1 2
2 2
3 1
4 1
5 1
6 1Not what we wanted!

no …

1
2
3
4
5
6

kid cageno

1 1
1 2
2 1
3 2
3 4
2 3
4 5

cageskeeps
• T1 LEFT JOIN T2 ON pred produces all rows in T1 x T2 that satisfy pred, plus all 

rows in T1 that don’t join with any row in T2 
• For those rows, fields of T2 are NULL 

Example: 
SELECT no, COUNT(*) 
FROM cages LEFT JOIN keeps  
ON no=cageno 
GROUP BY no 



Left Join?

no COUNT

1 2
2 2
3 1
4 1
5 1
6 0

no …

1
2
3
4
5
6

kid cageno

1 1
1 2
2 1
3 2
3 4
2 3
4 5

cageskeeps
• T1 LEFT JOIN T2 ON pred produces all rows in T1 x T2 that satisfy pred, plus all 

rows in T1 that don’t join with any row in T2 
• For those rows, fields of T2 are NULL 

Example: 
SELECT no, COUNT(cageno) 
FROM cages LEFT JOIN keeps  
ON no=cageno 
GROUP BY no 

COUNT(*) counts all rows including NULLs, COUNT(col) 
only counts rows with non-null values in col



https://clicker.mit.edu/6.8530/
Return all keeper names who keep bears and giraffes

OPTION A 
SELECT keepers.name 
FROM keepers JOIN keeps ON id = kid 
JOIN cages ON cageno = no 
JOIN animals ON acageno = cageno  
WHERE species = 'Bear’ AND species  = 'Giraffe'

OPTION B 
SELECT keepers.name 
FROM keepers JOIN keeps ON id = kid 
JOIN cages ON cageno = no 
JOIN animals ON acageno = cageno  
WHERE species = 'Bear’ OR species  = 'Giraffe'

Animals: (aid, name, age, species, acageno) 
Cages: (no, feedtime, bldg) 
Keepers: (id, name) 
Keeps: (kid, cageno)

OPTION C 
SELECT keepers.name 
FROM keepers JOIN keeps ON id = kid 
JOIN cages ON cageno = no 
JOIN animals ON acageno = cageno  
GROUP BY species 
HAVING species = 'Bear’ AND species  = 'Giraffe'

OPTION D 
None of the options work



Self Joins
• Keepers who keep bears and giraffes 
SELECT keepers.name 
FROM keepers JOIN keeps ON id = kid 
JOIN cages ON cageno = no 
JOIN animals ON acageno = cageno  
WHERE species = 'Bear’ AND species  = 'Giraffe' 
 
Doesn’t work! 
 
OR species = ‘Giraffe’? 
Also doesn’t work!



Self Joins
• Keepers who keep bears and giraffes 
• Need to build two tables, Bear keepers 

and Giraffe keepers, and intersect 
them

SELECT bear_keepers.name 
FROM keepers AS bear_keepers  
JOIN keeps AS bear_keeps ON bear_keepers.id = bear_keeps.kid 
JOIN cages AS bear_cages ON bear_keeps.cageno = bear_cages.no 
JOIN animals AS bear_animals ON bear_animals.acageno = bear_cages.no 
JOIN keepers AS giraffe_keepers  
JOIN keeps AS giraffe_keeps ON giraffe_keepers.id = giraffe_keeps.kid 
JOIN cages AS giraffe_cages ON giraffe_keeps.cageno = giraffe_cages.no 
JOIN animals AS giraffe_animals ON giraffe_animals.acageno = giraffe_cages.no 
WHERE bear_animals.species = 'Bear' 
AND giraffe_animals.species = 'Giraffe' 
AND giraffe_keepers.id = bear_keepers.id



Self Joins
• Keepers who keep bears and giraffes 
• Need to build two tables, Bear keepers 

and Giraffe keepers, and intersect 
them

SELECT bear_keepers.name 
FROM keepers AS bear_keepers  
JOIN keeps AS bear_keeps ON bear_keepers.id = bear_keeps.kid 
JOIN cages AS bear_cages ON bear_keeps.cageno = bear_cages.no 
JOIN animals AS bear_animals ON bear_animals.acageno = bear_cages.no 
JOIN keepers AS giraffe_keepers  
JOIN keeps AS giraffe_keeps ON giraffe_keepers.id = giraffe_keeps.kid 
JOIN cages AS giraffe_cages ON giraffe_keeps.cageno = giraffe_cages.no 
JOIN animals AS giraffe_animals ON giraffe_animals.acageno = giraffe_cages.no 
WHERE bear_animals.species = 'Bear' 
AND giraffe_animals.species = 'Giraffe' 
AND giraffe_keepers.id = bear_keepers.id

Keepers Keeps

⨝
⨝

Cages Animals

⨝

𝛔(species=‘Bear’)



Self Joins
• Keepers who keep bears and giraffes 
• Need to build two tables, Bear keepers 

and Giraffe keepers, and intersect 
them

SELECT bear_keepers.name 
FROM keepers AS bear_keepers  
JOIN keeps AS bear_keeps ON bear_keepers.id = bear_keeps.kid 
JOIN cages AS bear_cages ON bear_keeps.cageno = bear_cages.no 
JOIN animals AS bear_animals ON bear_animals.acageno = bear_cages.no 
JOIN keepers AS giraffe_keepers  
JOIN keeps AS giraffe_keeps ON giraffe_keepers.id = giraffe_keeps.kid 
JOIN cages AS giraffe_cages ON giraffe_keeps.cageno = giraffe_cages.no 
JOIN animals AS giraffe_animals ON giraffe_animals.acageno = giraffe_cages.no 
WHERE bear_animals.species = 'Bear' 
AND giraffe_animals.species = 'Giraffe' 
AND giraffe_keepers.id = bear_keepers.id

Keepers Keeps

⨝
⨝

Cages Animals

⨝

𝛔(species=‘Bear’)

Bears



Self Joins
• Keepers who keep bears and giraffes 
• Need to build two tables, Bear keepers 

and Giraffe keepers, and intersect 
them

SELECT bear_keepers.name 
FROM keepers AS bear_keepers  
JOIN keeps AS bear_keeps ON bear_keepers.id = bear_keeps.kid 
JOIN cages AS bear_cages ON bear_keeps.cageno = bear_cages.no 
JOIN animals AS bear_animals ON bear_animals.acageno = bear_cages.no 
JOIN keepers AS giraffe_keepers  
JOIN keeps AS giraffe_keeps ON giraffe_keepers.id = giraffe_keeps.kid 
JOIN cages AS giraffe_cages ON giraffe_keeps.cageno = giraffe_cages.no 
JOIN animals AS giraffe_animals ON giraffe_animals.acageno = giraffe_cages.no 
WHERE bear_animals.species = 'Bear' 
AND giraffe_animals.species = 'Giraffe' 
AND giraffe_keepers.id = bear_keepers.id

Keepers Keeps

⨝
⨝

Cages Animals

⨝

𝛔(species=‘Bear’)

Bears

KeepersKeeps

⨝
⨝

CagesAnimals

⨝

𝛔(species=‘Giraffe’)

Giraffes



Self Joins
• Keepers who keep bears and giraffes 
• Need to build two tables, Bear keepers 

and Giraffe keepers, and intersect 
them

SELECT bear_keepers.name 
FROM keepers AS bear_keepers  
JOIN keeps AS bear_keeps ON bear_keepers.id = bear_keeps.kid 
JOIN cages AS bear_cages ON bear_keeps.cageno = bear_cages.no 
JOIN animals AS bear_animals ON bear_animals.acageno = bear_cages.no 
JOIN keepers AS giraffe_keepers  
JOIN keeps AS giraffe_keeps ON giraffe_keepers.id = giraffe_keeps.kid 
JOIN cages AS giraffe_cages ON giraffe_keeps.cageno = giraffe_cages.no 
JOIN animals AS giraffe_animals ON giraffe_animals.acageno = giraffe_cages.no 
WHERE bear_animals.species = 'Bear' 
AND giraffe_animals.species = 'Giraffe' 
AND giraffe_keepers.id = bear_keepers.id

Keepers Keeps

⨝
⨝

Cages Animals

⨝

𝛔(species=‘Bear’)

⨝
giraffe_keepers.id 
= bear_keepers.id

Bears

KeepersKeeps

⨝
⨝

CagesAnimals

⨝

𝛔(species=‘Giraffe’)

Giraffes

7-way join, for a pretty simple 
query!



Nested Queries
Every query is a relation 
(table)  

Anywhere you can use a 
table, you can use a query! 

SELECT bear_keepers.name 
FROM ( 
    SELECT id, keepers.name FROM 
    keepers JOIN keeps ON id = kid 
    JOIN cages ON cageno = no 
    JOIN animals ON acageno = no 
    WHERE species = 'Bear' 
) AS bear_keepers 
JOIN ( 
    SELECT id, keepers.name FROM 
    keepers JOIN keeps ON id = kid 
    JOIN cages ON cageno = no 
    JOIN animals ON acageno = no 
    WHERE species = 'Giraffe' 
) AS giraffe_keepers  
ON giraffe_keepers.id = bear_keepers.id



Simplify with Common Table Expressions 
(CTEs)

CTEs work better than 
nested expressions 
when the CTE needs to 
be referenced in 
multiple places

WITH bear_keepers AS ( 
    SELECT id, keepers.name FROM 
    keepers JOIN keeps ON id = kid 
    JOIN cages ON cageno = no 
    JOIN animals ON acageno = no 
    WHERE species = 'Bear' 
), 
giraffe_keepers AS ( 
    SELECT id, keepers.name FROM 
    keepers JOIN keeps ON id = kid 
    JOIN cages ON cageno = no 
    JOIN animals ON acageno = no 
    WHERE species = 'Giraffe' 
)  
SELECT bear_keepers.name 
FROM bear_keepers JOIN giraffe_keepers 
ON giraffe_keepers.id = bear_keepers.id



SQL can get complex
with one_phone_tags as ( 
    select tag_mac_address 
    from mapmatch_history 
    where uploadtime > '9/1/2021'::date and uploadtime < '9/10/2021'::date 
    and json_extract_path_text(device_config,'manufacturer') = 'Apple’ 
    group by 1 
    having count(distinct device_config_hint) = 1 
), 
ios15_tags as ( 
select  json_extract_path_text(device_config,'version_release') os_version, 
            json_extract_path_text(device_config,'model') model_number, 
            tag_mac_address 
    from mapmatch_history 
    where uploadtime >= '10/11/2021'::date    
    and json_extract_path_text(device_config,'manufacturer') = 'Apple' 
    and tag_mac_address in (select tag_mac_address from one_phone_tags) 
   and substring(os_version, 1, 2) = '15' 
    group by 1,2,3 
), 
ios14_tags as ( 
select  json_extract_path_text(device_config,'version_release') os_version, 
            json_extract_path_text(device_config,'model') model_number, 
            tag_mac_address 
    from mapmatch_history 
    where uploadtime >= '9/15/2021'::date and uploadtime <= '9/20/2021'::date 
    and json_extract_path_text(device_config,'manufacturer') = 'Apple' 
    and tag_mac_address in (select tag_mac_address from one_phone_tags) 
   and substring(os_version, 1, 2) = '14' 

ios15_trip_stats as ( 
    select tag_mac_address, count(*) ios15_num_trips,  
    sum(case when mmh_display_distance_km isnull then 1 else 0 end) 
ios15_num_trips_no_phone, 
    sum(case when mmh_display_distance_km isnull then 1 else 0 end) / 
count(*)::float ios15_frac_none, 
    from triplog_trips join ios15_tags using(tag_mac_address) 
    where created_date >= '10/11/2021'::date  
    and trip_start_ts >= '10/09/2021'::date  
    and substring(model_number, 1, 8) = 'iPhone13' 
    group by tag_mac_address 
    having count(*) > 0 
), 
ios14_trip_stats as ( 
    select tag_mac_address, count(*) ios14_num_trips,  
    sum(case when mmh_display_distance_km isnull then 1 else 0 end) 
ios14_num_trips_no_phone, 
    sum(case when mmh_display_distance_km isnull then 1 else 0 end) / 
count(*)::float ios14_frac_none, 
    from triplog_trips join ios14_tags using(tag_mac_address) 
    where created_date >= '9/15/2021'::date and created_date <= '9/20/2021'::date  
    and trip_start_ts >= '9/13/2021'::date and trip_start_ts <= '9/20/2021'::date 
    and substring(model_number, 1, 8) = 'iPhone13' 
    group by tag_mac_address 
    having count(*) > 0 
) 
select 
tag_mac_address,ios14_num_trips,ios14_num_trips_no_phone,ios14_frac_none, 
        ios15_num_trips,ios15_num_trips_no_phone,ios15_frac_none 
        from ios15_trip_stats join ios14_trip_stats using(tag_mac_address)



Study Break

• Write a SQL query to find animals kept by a keeper who keeps Giraffes 
• I.e., for our graph:

keepers (id, name) 
cages (no, feedtime, bldg) 
animals (aid, age, species, acageno, name) 
keeps (kid, cageno)

Jane 
Kid=1

Joe 
Kid=2

Cage1

Cage2

Cage3

1. Sam the 
Salamander  

2. Tim the Giraffe

4. Barry the Bear

3. Sally the 
Student

The keepers who keep Giraffes and the 
animals they keep are: 

Joe, who keeps Sam, Barry, and Tim 
Jane, who keeps Sally, Sam, and Tim 

Sam, Barry, Sally



Solution

• Write a SQL query to find animals kept by a keeper who keeps Giraffes

Jane 
Kid=1

Joe 
Kid=2

Cage1

Cage2

Cage3

1. Sam the 
Salamander  

2. Tim the Giraffe

4. Barry the Bear

3. Sally the 
Student

WITH giraffe_keepers AS ( 
    SELECT id  
    FROM keepers JOIN keeps ON id = kid 
    JOIN cages ON cageno = no 
    JOIN animals ON acageno = no 
    WHERE species = 'Giraffe' 
), giraffe_keeper_cages AS ( 
    SELECT cageno FROM 
    giraffe_keepers JOIN keeps ON kid = id 
) 
SELECT name,species  
FROM animals JOIN giraffe_keeper_cages  
ON cageno = acageno 
WHERE species != 'Giraffe'



Solution

• Write a SQL query to find animals kept by a keeper who keeps Giraffes

Jane 
Kid=1

Joe 
Kid=2

Cage1

Cage2

Cage3

1. Sam the 
Salamander  

2. Tim the Giraffe

4. Barry the Bear

3. Sally the 
Student

WITH giraffe_keepers AS ( 
    SELECT id  
    FROM keepers JOIN keeps ON id = kid 
    JOIN cages ON cageno = no 
    JOIN animals ON acageno = no 
    WHERE species = 'Giraffe' 
), giraffe_keeper_cages AS ( 
    SELECT cageno FROM 
    giraffe_keepers JOIN keeps ON kid = id 
) 
SELECT name,species  
FROM animals JOIN giraffe_keeper_cages  
ON cageno = acageno 
WHERE species != 'Giraffe'

keepers (id, name) 
cages (no, feedtime, bldg) 
animals (aid, age, species, acageno, name) 
keeps (kid, cageno)



Solution

• Write a SQL query to find animals kept by a keeper who keeps Giraffes

Jane 
Kid=1

Joe 
Kid=2

Cage1

Cage2

Cage3

1. Sam the 
Salamander  

2. Tim the Giraffe

4. Barry the Bear

3. Sally the 
Student

WITH giraffe_keepers AS ( 
    SELECT id  
    FROM keepers JOIN keeps ON id = kid 
    JOIN cages ON cageno = no 
    JOIN animals ON acageno = no 
    WHERE species = 'Giraffe' 
), giraffe_keeper_cages AS ( 
    SELECT cageno FROM 
    giraffe_keepers JOIN keeps ON kid = id 
) 
SELECT name,species  
FROM animals JOIN giraffe_keeper_cages  
ON cageno = acageno 
WHERE species != 'Giraffe'

keepers (id, name) 
cages (no, feedtime, bldg) 
animals (aid, age, species, acageno, name) 
keeps (kid, cageno)



Solution

• Write a SQL query to find animals kept by a keeper who keeps Giraffes

Jane 
Kid=1

Joe 
Kid=2

Cage1

Cage2

Cage3

1. Sam the 
Salamander  

2. Tim the Giraffe

4. Barry the Bear

3. Sally the 
Student

WITH giraffe_keepers AS ( 
    SELECT id  
    FROM keepers JOIN keeps ON id = kid 
    JOIN cages ON cageno = no 
    JOIN animals ON acageno = no 
    WHERE species = 'Giraffe' 
), giraffe_keeper_cages AS ( 
    SELECT cageno FROM 
    giraffe_keepers JOIN keeps ON kid = id 
) 
SELECT name,species  
FROM animals JOIN giraffe_keeper_cages  
ON cageno = acageno 
WHERE species != 'Giraffe'

keepers (id, name) 
cages (no, feedtime, bldg) 
animals (aid, age, species, acageno, name) 
keeps (kid, cageno)



Solution

Write a SQL query to find animals kept by a keeper who keeps Giraffes

WITH giraffe_keepers AS ( 
    SELECT id  
    FROM keepers JOIN keeps ON id = kid 
    JOIN cages ON cageno = no 
    JOIN animals ON acageno = no 
    WHERE species = 'Giraffe' 
), giraffe_keeper_cages AS ( 
    SELECT cageno FROM 
    giraffe_keepers JOIN keeps ON kid = id 
) 
SELECT name,species  
FROM animals JOIN giraffe_keeper_cages  
ON cageno = acageno 
WHERE species != 'Giraffe'

Run it: 

Sally|Student
Sam|Salamander
Sally|Student
Barry|Bear

Problem: Duplicates!

1 
2 
1 
3

1,2

keepers (id, name) 
cages (no, feedtime, bldg) 
animals (aid, age, species, acageno, name) 
keeps (kid, cageno)



Solution

• Write a SQL query to find animals kept by a keeper who keeps Giraffes

WITH giraffe_keepers AS ( 
    SELECT id  
    FROM keepers JOIN keeps ON id = kid 
    JOIN cages ON cageno = no 
    JOIN animals ON acageno = no 
    WHERE species = 'Giraffe' 
), giraffe_keeper_cages AS ( 
    SELECT cageno FROM 
    giraffe_keepers JOIN keeps ON kid = id 
) 
SELECT DISTINCT name,species  
FROM animals JOIN giraffe_keeper_cages  
ON cageno = acageno 
WHERE species != 'Giraffe'

Run it: 

Sally|Student
Sam|Salamander
Barry|Bear

keepers (id, name) 
cages (no, feedtime, bldg) 
animals (aid, age, species, acageno, name) 
keeps (kid, cageno)



Recursive Queries
• Suppose there is a breakout of a dangerous disease that spreads 

through humans and animals, and we need to find all animals that 
have been in contact with a keeper or animal who might be sick 

Anant 
Kid=4

Jane 
Kid=1

Yuan 
Kid=3

Joe 
Kid=2

A: Sam, Mike, Sally Barry, Turdy

Challenge: each successive join 
follows one set of edges.  Size 
of graph is unbounded!

Cage1

Cage2

Cage3

Cage4

Cage5

Sam the Salamander 
Mike the Giraffe

Barry the Bear

Sally the 
Student

Turdy the 
Turtle

Mork the Mink 
Ollie the Otter



Recursive Queries
• Recursive WITH clause can join with itself 
• Example: define a table t with one column n, iteratively join with with itself 

WITH RECURSIVE t(n) AS  
(SELECT 1  as n 
UNION 
SELECT n+1  
FROM t WHERE n < 100  
)  
SELECT sum(n) FROM t;  

n0

1



Recursive Queries
• Recursive WITH clause can join with itself 
• Example: define a table t with one column n, iteratively join with with itself 

WITH RECURSIVE t(n) AS  
(SELECT 1  as n 
UNION 
SELECT n+1  
FROM t WHERE n < 100  
)  
SELECT sum(n) FROM t;  

n0

1



Recursive Queries
• Recursive WITH clause can join with itself 
• Example: define a table t with one column n, iteratively join with with itself 

WITH RECURSIVE t(n) AS  
(SELECT 1  as n 
UNION 
SELECT n+1  
FROM t WHERE n < 100  
)  
SELECT sum(n) FROM t;  

n0

1

t

2

n1

1

2



Recursive Queries
• Recursive WITH clause can join with itself 
• Example: define a table t with one column n, iteratively join with with itself 

WITH RECURSIVE t(n) AS  
(SELECT 1  as n 
UNION 
SELECT n+1  
FROM t WHERE n < 100  
)  
SELECT sum(n) FROM t;  

n0

1

n1

1

2



Recursive Queries
• Recursive WITH clause can join with itself 
• Example: define a table t with one column n, iteratively join with with itself 

WITH RECURSIVE t(n) AS  
(SELECT 1  as n 
UNION 
SELECT n+1  
FROM t WHERE n < 100  
)  
SELECT sum(n) FROM t;  

n0

1

n1

1

2

t

3

n2

1

2

3



Recursive Queries
• Recursive WITH clause can join with itself 
• Example: define a table t with one column n, iteratively join with with itself 

WITH RECURSIVE t(n) AS  
(SELECT 1  as n 
UNION 
SELECT n+1  
FROM t WHERE n < 100  
)  
SELECT sum(n) FROM t;  

n0

1

n1

1

2

n2

1

2

3

n3

1

2

3

4

n4

1

2

3

4

5



The Power of Recursion
• Recursion makes SQL Turing complete 
• Some logical are surprisingly easy to express, e.g., Sudoku solver:
WITH RECURSIVE 
  input(sud) AS (VALUES('53..7....6..195....98....6.8...6...34..8.3..17...2...6.6....28....419..5....8..79')), 
  digits(z, lp) AS ( 
    VALUES('1', 1) 
    UNION ALL SELECT 
    CAST(lp+1 AS TEXT), lp+1 FROM digits WHERE lp<9 
  ), 
  x(s, ind) AS ( 
    SELECT sud, instr(sud, '.') FROM input 
    UNION ALL 
    SELECT substr(s, 1, ind-1) || z || substr(s, ind+1), 
      instr( substr(s, 1, ind-1) || z || substr(s, ind+1), '.' ) 
     FROM x, digits AS z WHERE ind>0 
      AND NOT EXISTS ( 
            SELECT 1 
              FROM digits AS lp 
             WHERE z.z = substr(s, ((ind-1)/9)*9 + lp, 1) 
                OR z.z = substr(s, ((ind-1)%9) + (lp-1)*9 + 1, 1) 
                OR z.z = substr(s, (((ind-1)/3) % 3) * 3 
                        + ((ind-1)/27) * 27 + lp 
                        + ((lp-1) / 3) * 6, 1)) 
 ) 
SELECT s FROM x WHERE ind=0;

Puzzle encoding 
(“.” = blank)

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

Table of digits, 1-9

Find an assignment 
to a “.” that satisfies 
constraints of Sudoku 

Solution, given “.” at position ind

Expression of 
constraints



Recursive Queries
• Suppose we need to find all animals that have been in contact with a 

keeper or animal who might be sick 

WITH recursive sick_keepers as ( 
    SELECT kid as sick_id  -- keepers who keep an animal who is sick 
    FROM keeps 
    JOIN animals on acageno = cageno 
    WHERE animals.name = 'Mike' 
UNION 
    SELECT k1.kid  -- keepers who keep the same cage as another  
                              --     keeper who might be sick 
    FROM keeps k1 
    JOIN keeps k2 on k2.cageno = k1.cageno 
    JOIN sick_keepers on k2.kid = sick_id 
) 
SELECT distinct(name) FROM animals -- animals in cages with keepers who might be sick 
JOIN keeps on cageno = acageno 
JOIN sick_keepers ON sick_id = kid

Base case: keepers of Mike (note: no 
need to look at cages table) 

Each successive iteration: keepers 
who keep the same cage as a keeper 
who might be sick 

Animals kept in the cages that 
possibly sicky keepers keep

keepers (id, name) 
cages (no, feedtime, bldg) 
animals (aid, age, species, acageno, name) 
keeps (kid, cageno)



Recursion Example

kid cageno

1 1

1 2

2 1

3 2

3 4

2 3

4 5

WITH recursive sick_keepers(kid) as ( 
    SELECT kid as sick_id 
    FROM keeps k 
    JOIN animals a on a.cageno = k.cageno 
    WHERE animals.name = 'Mike' 
UNION 
    SELECT k2.kid as sick_id 
    FROM sick_keepers 
    JOIN keeps k1 on k1.kid = sick_id 
    JOIN keeps k2 on k2.cageno = k1.cageno 
) 

Name cageno

Mike 1

Sam 2

Sally 1

Barry 3

Turdy 4

Mork 5

Ollie 5

keeps animals

• Mike is in cageno 1, kept by keepers 1 & 2



Recursion Example

kid cageno

1 1

1 2

2 1

3 2

3 4

2 3

4 5

WITH recursive sick_keepers(kid) as ( 
    SELECT kid as sick_id 
    FROM keeps k 
    JOIN animals a on a.cageno = k.cageno 
    WHERE animals.name = 'Mike' 
UNION 
    SELECT k2.kid as sick_id 
    FROM sick_keepers 
    JOIN keeps k1 on k1.kid = sick_id 
    JOIN keeps k2 on k2.cageno = k1.cageno 
) 

Sick_id

1

2

Base case

Name cageno

Mike 1

Sam 2

Sally 1

Barry 3

Turdy 4

Mork 5

Ollie 5

keeps animals

• Mike is in cageno 1, kept by keepers 1 & 2



Recursion Example
• Mike is in cageno 1, kept by keepers 1 & 2

kid cageno

1 1

1 2

2 1

3 2

3 4

2 3

4 5

WITH recursive sick_keepers(kid) as ( 
    SELECT kid as sick_id 
    FROM keeps k 
    JOIN animals a on a.cageno = k.cageno 
    WHERE animals.name = 'Mike' 
UNION 
    SELECT k2.kid as sick_id 
    FROM sick_keepers 
    JOIN keeps k1 on k1.kid = sick_id 
    JOIN keeps k2 on k2.cageno = k1.cageno 
) 

Sick_id

1

2

Base case

Name cageno

Mike 1

Sam 2

Sally 1

Barry 3

Turdy 4

Mork 5

Ollie 5

keeps animals



Recursion Example
• Mike is in cageno 1, kept by keepers 1 & 2

kid cageno

1 1

1 2

2 1

3 2

3 4

2 3

4 5

WITH recursive sick_keepers(kid) as ( 
    SELECT kid as sick_id 
    FROM keeps k 
    JOIN animals a on a.cageno = k.cageno 
    WHERE animals.name = 'Mike' 
UNION 
    SELECT k2.kid as sick_id 
    FROM sick_keepers 
    JOIN keeps k1 on k1.kid = sick_id 
    JOIN keeps k2 on k2.cageno = k1.cageno 
) 

Sick_id

1

2

Base case

Name cageno

Mike 1

Sam 2

Sally 1

Barry 3

Turdy 4

Mork 5

Ollie 5

keeps animals



Recursion Example
• Mike is in cageno 1, kept by keepers 1 & 2

kid cageno

1 1

1 2

2 1

3 2

3 4

2 3

4 5

WITH recursive sick_keepers(kid) as ( 
    SELECT kid as sick_id 
    FROM keeps k 
    JOIN animals a on a.cageno = k.cageno 
    WHERE animals.name = 'Mike' 
UNION 
    SELECT k2.kid as sick_id 
    FROM sick_keepers 
    JOIN keeps k1 on k1.kid = sick_id 
    JOIN keeps k2 on k2.cageno = k1.cageno 
) 

Keeps k1

kid cageno

1 1

1 2

2 1

3 2

3 4

2 3

4 5

Keeps k1

Sick_id

1

2

Sick_id

1

2

3

t0 t1



Recursion Example
• Mike is in cageno 1, kept by keepers 1 & 2

kid cageno

1 1

1 2

2 1

3 2

3 4

2 3

4 5

WITH recursive sick_keepers(kid) as ( 
    SELECT kid as sick_id 
    FROM keeps k 
    JOIN animals a on a.cageno = k.cageno 
    WHERE animals.name = 'Mike' 
UNION 
    SELECT k2.kid as sick_id 
    FROM sick_keepers 
    JOIN keeps k1 on k1.kid = sick_id 
    JOIN keeps k2 on k2.cageno = k1.cageno 
) 

Keeps k1

Sick_id

1

2

Sick_id

1

2

3

t0 t1

Name cageno

Mike 1

Sam 2

Sally 1

Barry 3

Turdy 4

Mork 5

Ollie 5

animals

Sick_id

1

2

3

t2



Window Functions
• Suppose I want to compute a CDF of animal feedtimes 
• Consider a table like: 

times (hour int, minute int, animalid int) 
• Tricky to do this in regular SQL;  idea: 

• Sort by hour, minute 
• For each row X, select the number of rows with hour <= X.hour and minute <= X.minute	  

• What if we want to partition this and get a CDF for each animal separately? 
• What if we want the 7 day moving average of feedtimes?  

• Generally a pain to work with ordered data in SQL….

SELECT hour, minute,
  (SELECT count(*)
   FROM times t2
   WHERE (t.hour = t2.hour AND t. minute >= t2.minute)
     OR (t.hour > t2.hour))
FROM times t
ORDER BY hour, minute

Correlated subexpression:  
references outer table, evaluated 
once per outer table row!



Window Functions
• Suppose I want to create a table with a running sum over the number of 

animals per cage

CageID Animal_Count Running_Sum

1 2 2

2 1 3

3 1 4

4 1 5

5 2 7



Window Functions

SELECT x, y, ..., window_func(params)  
	 OVER (PARTITION BY alist1 ORDER BY alist2)

Split the rows into 
partitions by alist1 

Within each partition 
order rows by alist2

Compute the value of window_func 
for each row of each partition

Example: 
	 SELECT hour, minute, RANK() OVER (ORDER BY hour, minute) FROM times 
Compute the rank of each row 

times (hour int, minute int, animalid int)

hour minute

4 30

1 15

2 00

hour minute

1 15

2 00

4 30

1

2

3



Window Functions

Example: 
	 SELECT animalid hour, minute, RANK()  
	 OVER (PARTITION BY animalid ORDER BY hour, minute) FROM times

times (hour int, minute int, animalid int)

hour min animalid

4 30 1

1 15 2

2 00 2

3 10 1

5 00 2

1 30 1

animal hour minute

2 1 15

2 2 00

2 5 00

1

2

3

animal hour minute

1 4 30

1 2 00

1 3 10

1

2

3

animal hour minute

2 1 15

2 2 00

2 5 00

animal hour minute

1 2 00

1 3 10

1 4 30order

Split by 
animal, 
compute the 
rank of each 
row 



Other Window Functions

• cume_dist() : cumulative position of the row (between 0 and 1) in 
total ordering 

• lag(value, offset): return the value for the record offset 
records before this one 

• sum() / count() / avg() : sum / count / average of all rows in 
partition 
• For these expressions, OVER clause can include a frame that defines the subset 

of the partition to be included (Example on next slide)



Examples
hour min qty

4 30 10

1 15 20

2 00 30

3 10 40SELECT hour, min, cume_dist()  
OVER (ORDER BY hour, min) as c FROM times

times

hour min c
1 15 0.25
2 0 0.5
3 10 0.75
4 30 1

SELECT hour, min, qty, lag(qty,1)  
OVER (ORDER BY hour, min) as lag FROM times

hour min qty lag
1 15 20
2 0 30 20
3 10 40 30
4 30 10 40

SELECT hour, min, avg(qty)  
OVER (ORDER BY hour, min  
ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) 
AS rolling_avg FROM times

hour min rolling_avg
1 15 20
2 0 25
3 10 30
4 30 26.67

Times with feed quantities

“Frame”



Study Break

• Write a SQL query with window function to compute the difference 
between sales a week ago and today

Date Sales

1/1/2022 5540
…

1/8/2022 7000

…

1/15/2022 9000

• rank(): rank of items in 
ordering

• cume_dist(): cumulative 
position of the row (between 0 
and 1) in total ordering

• lag(value, offset): 
return the value for the record 
offset records before this one

• sum() / count() / avg() 
: sum / count / average of all rows 
in partition

SELECT hour, min, cume_dist()  
OVER (ORDER BY hour, min) as c FROM times

SELECT hour, min, qty, lag(qty,1)  
OVER (ORDER BY hour, min) as lag FROM times

SELECT hour, min, avg(qty)  
OVER (ORDER BY hour, min  
ROWS BETWEEN 2 PRECEDING  
AND CURRENT ROW) AS rolling_avg  
FROM times

Functions Queries

+1460

+2000

Assume 1 row per day

Sales Table



Soln

• Write a SQL query with window function to compute the difference 
between sales a week ago and today

Date Sales

1/1/2022 5540
…

1/8/2022 7000

…

1/15/2022 9000

+1460

+2000

SELECT date, sales, sales - lag(sales,7)  
OVER (ORDER BY date) difference FROM sales


