
6.5830 Lecture 4

Database Internals
September 18, 2023

What happens inside?
SELECT *
FROM animals
WHERE species = ‘Giraffe’

id name age species cageno

2 Mike 12 Giraffe 1

What happens inside?
SELECT name, addr, balance
FROM accounts
WHERE userid = ?

name addr balance

… … …

What happens inside?
SELECT image, imgid
FROM planet_images
WHERE likelyPlanet(image)=TRUE

image imgid

… …

Database systems can support
• interactive queries
• web applications
• large-scale science

and many other workloads

What happens inside?

What happens inside?

Why do you need admission control?

Why is scheduling important?

What happens inside?

1. Client makes conn, xmits SQL
2. Admission control prevents too

much incoming work
3. Check role-based privileges
4. Query gets assigned to a “worker”
5. How should you do the work?

1. Process per worker
2. Thread per worker
3. Process pool

What happens inside?

What happens inside?

What happens inside?

What happens inside?

DB Core Components
Admission Control

Connection Management

Query System

Parser

Rewriter

Planner

Executor

Optimizer

Access
Methods

Buffer
Manager

Lock
Manager

Log
Manager

Flow of a Query
Admission Control

Connection Management

Query System

Parser

Rewriter

Planner

Executor

Optimizer

SQL

Parse Tree

Query Plan

Access
Methods

Buffer
Manager

Lock
Manager

Log
Manager

⨝
starName = name

𝛔birthday…

movieStar

ΠmovieTitle

starsIn

ΠmovieTitle

starsIn

⨝
starName = name

𝛔birthday…

movieStar

Plan for Next Few Lectures
Admission Control

Connection Management

Query System

Parser

Rewriter

Planner

Executor

Optimizer

Access
Methods

Buffer
Manager

Lock
Manager

Log
Manager

Today
+Lec 5

Lec 6

(Lec 9)

Lec 7 – Join Algos

Today

Query Processing Steps

• Admission Control
• Query Rewriting
• Plan Formulation (SQL à Tree)
• Optimization

Query Processing Steps

• Admission Control
• Query Rewriting
• Plan Formulation (SQL à Tree)
• Optimization

Query Rewriting

• View Substitution
• Predicate Transforms
• Subquery Flattening

View Substitution

create view sals as (

)

emp : id, sal, age, dept

select sal from sals where dept = 'eecs';

select sal from (

)where dept = 'eecs';

select dept, avg(sal) as sal
from emp
group by dept

Predicate Transforms

• Remove & simplify expressions, improve
• Constant Simplification

WHERE sal > 1000 + 4000 è WHERE sal > 5000

• Exploit constraints
a.did = 10 and a.did = dept.dno

• Remove redundant expressions
a.sal > 10k and sal > 20k

and dept.dno = 10

Predicate Transforms

• Remove & simplify expressions, improve
• Constant Simplification

WHERE sal > 1000 + 4000 è WHERE sal > 5000

• Exploit constraints
a.did = 10 and a.did = dept.dno

• Remove redundant expressions
a.sal > 10k and sal > 20k

and dept.dno = 10

Subquery Flattening

• Many Subqueries Can Be Eliminated
select sal from (

select dept, avg(sal) as sal
from emp
group by dept

)where dept = 'eecs';

select avg(sal)
from emp
group by dept

having dept = 'eecs';

Can you come up with an example where this is
not possible?

Subquery Flattening

• Many Subqueries Can Be Eliminated

• Not always possible; consider

select sal from (
select dept, avg(sal) as sal
from emp
group by dept

)where dept = 'eecs';

select avg(sal)
from emp
group by dept

having dept = 'eecs';

create view sals as {
select distinct dept, sal
from emp

}
select avg(sal) from sals

select avg(sal) from (
select distinct dept, sal
from emp

)

select
avg(distinct sal)
from emp

?

Study Break (Tricky)
Flatten this query (departments where number of
machines is more than number of employees):

SELECT dept.name
FROM dept
WHERE dept.num_machines >=
 (SELECT COUNT(emp.*)
 FROM emp
 WHERE dept.name=emp.dept_name)

https://clicker.mit.edu/6.5830/

SELECT dept.name
FROM dept d, emp e
WHERE d.name=e.dept_name
GROUP BY d.name, d.num_machines
HAVING d.num_machines >= COUNT(e.*)

SELECT dept.name
FROM dept d
LEFT OUTER JOIN emp e
 ON (d.name=e.dept_name)
GROUP BY d.name, d.num_machines
HAVING d.num_machines >= COUNT(e.*)

SELECT dept.name FROM dept

WHERE dept.num_machines >= (SELECT COUNT(emp.*) FROM emp

 WHERE dept.name=emp.dept_name)

SELECT dept.name
FROM dept d, emp e
WHERE d.name=e.dept_name
 and d.num_machines >=
COUNT(e.*)
GROUP BY d.name, d.num_machines

SELECT dept.name
FROM dept d, emp e
WHERE d.name=e.dept_name
GROUP BY d.name
HAVING COUNT(d.num_machines) >= COUNT(e.*)

A B

C D

O
rig

in
al

Answer

SELECT dept.name
FROM dept
LEFT OUTER JOIN emp ON (dept.name=emp.dept_name)
GROUP BY dept.name,
 dept.num_machines
HAVING dept.num_machines >= COUNT(emp.*)

SELECT dept.name
FROM dept, emp
WHERE dept.name=emp.dept_name
GROUP BY dept.name,
 dept.num_machines
HAVING dept.num_machines >= COUNT(emp.*)

“Query rewrite optimization rules in IBM DB2
universal database”

“Rule Engine for Query Transformation in
Starburst and IBM DB2 C/S DBMS “

Query Processing Steps

• Admission Control
• Query Rewriting
• Plan Formulation (SQL à Tree)
• Optimization

Plan Formulation
emp (eno, ename, sal, dno)
dept (dno, dname, bldg)
kids (kno, eno, kname, bday)

SELECT ename, count(*)
FROM emp, dept, kids
AND emp.dno=dept.dno
AND kids.eno=emp.eno
AND emp.sal > 50000
AND dept.name = 'eecs'
GROUP BY ename
HAVING count(*) > 7

⨝
eno=eno

⨝
dno=dno

dept emp

kids

𝛔name=‘eecs’ 𝛔sal>50k

Πename,count

𝛂agg:count(*), group by ename

𝛔count > 7

Query Optimization

⨝
eno=eno

⨝
dno=dno

dept emp

kids

𝛔name=‘eecs’ 𝛔sal>50k

Πename,count

𝛂agg:count(*), group by ename

𝛔count > 7

Logical planning:
operator ordering
(exponential search
space)

Physical planning:
operator implementation
& access methods
(indexes vs heap files)

Storage model &
access methods?

Implementation?

Order?

Joins and Ordering

• Consider a nested loop join operator of tables
Outer and Inner

• for tuple1 in Outer
 for tuple2 in Inner
 if predicate(tuple1, tuple2) then
 emit join(tuple1, tuple2)

• What if Inner is itself a join result?
• Plans might be “left-deep” or “bushy”

Plan for Next Few Lectures
Admission Control

Connection Management

Query System

Parser

Rewriter

Planner

Executor

Optimizer

Access
Methods

Buffer
Manager

Lock
Manager

Log
Manager

Today
+Lec 5

Lec 6

(Lec 9)

Lec 7 – Join Algos

Today

Query Execution

• Executing a query involves chaining together a
series of operators that implement the query

• Operator types:
 scan from disk/mem

 filter records
 join records
 aggregate records

à Requires a model of data
representation

⨝
starName = name

𝛔birthday…

movieStar

ΠmovieTitle

starsIn

Physical Layout

• Arrangement of records on disk / in memory
• Disk / memory are linear, tables are 2D

A B C D

1

2

3

1

2

3

How would you store the table on disk?

Knowing that you must efficiently support
inserts, deletes, and that some records
are more often read than others?

Physical Layout

• Arrangement of records on disk / in memory
• Disk / memory are linear, tables are 2D

– ”Row Major” - Row at a time

A B C D

1

2

3

Disk

0 1 2 3 4 5

6 7 8 9 10 11

1

2

3

Physical Layout

• Arrangement of records on disk / in memory
• Disk / memory are linear, tables are 2D

– ”Row Major” - Row at a time
– “Column Major” Column at a time

A B C D Disk

0 1 2 3 4 5

6 7 8 9 10 11

CBA
For now, let’s

assume row-
major!

How would you store records
on disk?

Accessing Data

• Access Method: way to read data from disk
• Heap File: unordered arrangement of records

– Arranged in pages
– You read/write/cache data in the granularity of

pages.

H
d
r

R
1

R
2

R
3

R
4

H
d
r

R
4

R
5

R
6

R
7

H
d
r

R
8

R
9

R
1
0

R
1
1

Page 1 Page 2 Page 3

…

Header: Start offset of each record,
which parts of page are occupied, etc Get Page 3 = Page# * PageSize

Heap Scan

• Read Heap File In Stored Order
– Even with a predicate, read all records

H
d
r

R
1

R
2

R
3

R
4

H
d
r

R
4

R
5

R
6

R
7

H
d
r

R
8

R
9

R
1
0

R
1
1

Page 1 Page 2 Page 3

…

https://clicker.mit.edu/6.5830/

Hardware (e.g., SSDs) and OS (e.g., virtual
memory) also use pages. They often are
4KB large.

Why does a database management
introduce yet another paging mechanism?

Page designs

Strawman idea: Keep track
of tuples in a page?

Any problems with this
design?

numUsed = 3

Tuple1

Tuple2

Tuple3

Page designs

Strawman idea: Keep track
of tuples in a page?

• What happens with
deletes?

• What happens with variable
length tuples (e.g., variable
length strings)?

numUsed = 3

Tuple1

Tuple3

Slotted pages

Common layout scheme

• Slot array maps "slots" to tuples
starting postion

• The header keeps track of:
→ The # of used slots
→ The offset of the starting location of
the last slot used.

Header

Tuple1Tuple2

Tuple3Tuple4

Slotted pages

How would you simplify
the layout if tuples have a
fixed length?

Do you need to store the
slot map?

Header

Tuple1Tuple2

Tuple3Tuple4

Index

• Index maps from a value or range of values of
some attribute to records with that value or
values

• Several types of indexes, including trees (most
commonly B+Trees) and hash indexes

API:
Lookup(value) à records
Lookup(v1 .. vn) à records

Value is an attribute of the table, called the “key” of the
index

Tree Index

Hdr R
1

R
2

R
3

R
4

3 2 9 4

H
d
r

R
4

R
5

R
6

R
7

6 1 0 2

H
d
r

R
8

R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6 8 9 9

Attrn

…

Index File

Heap File

8 9 9

Index Scan

Hdr R
1

R
2

R
3

R
4

3 2 9 4

H
d
r

R
4

R
5

R
6

R
7

6 1 0 2

H
d
r

R
8

R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

Traverse the
records in Attr1
order, or lookup a
range

Attr1 >= 6
&
Attr1 < 9

Note random vs sequential access!

Heap File

Clustered Index
• Order pages on disk in index order

Hdr R
1

R
2

R
3

R
4

3 2 9 4

H
d
r

R
4

R
5

R
6

R
7

6 1 0 2

H
d
r

R
8

R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

Attrn

…

8 9 9

Index File

Heap File

Clustered Index

Hdr R
6

R
8

R
2

R
7

0 1 2 2

H
d
r

R
1
0

R
1

R
4

R
1
1

2 3 4 5

H
d
r

R
4

R
9

R
3

R
8

6 8 9 9Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

Attrn

…

8 9 9

• Order pages on disk in index order

Index File

Heap File

Eliminates random I/O for index scans
on Attr1 (but only Attr1!)

Let’s take a short break

Connecting Operators: Iterator
Model

⨝
starName = name

𝛔birthday…

movieStar

ΠmovieTitle

starsIn

Data flows
from bottom to
top

Each operator implements a
simple iterator interface:

 open(params)
 getNext() à record
 close()

Any iterator can compose with
any other iterator

it1 = Scan.open(“movieStar”, …)
it2 = Filter.open(it1, bday=x, …)
it3 = Scan.open(“starsIn”, …)
it4 = Join.open(it2, it3,
 starName=name)
it5 = Proj.open(it4, movieTitle)

Iterator Model
it1 = Scan.open(“movieStar”, …)
it2 = Filter.open(it1, bday=x, …)
it3 = Scan.open(“starsIn”, …)
it4 = Join.open(it2, it3,
 starName=name)
it5 = Proj.open(it4, movieTitle)

it5

it4

it3it2

it1

getNext

getNext

getNext

getNext

movieStar

starsIn“Brad
Pitt”

“Brad
Pitt”

”Ad
Astra”

(”Brad Pitt”, “Ad Astra”)

getNext

(”Brad Pitt”)

Lab1: What is GoDB?

A basic database system implemented in Go
• A simple storage layer, based on Heap Files (Lab 1)

• A buffer pool for caching pages and implementation page-level locking for
transactions (Labs 1-3)

• A set of operators (Labs 1 & 2): Scan, Filter, Join, Aggregate, Order By, Project ...

• A SQL parser (Lab 2), which we implement for you

• Simple transactions (Lab 3)

• Previous years we included recovery, B+Trees, and query optimization, but have
reduced the labs because this is our first year in Go.

– Students in 6.5831 may implement one of these for their final project

What is GoDB Missing?

• Focus is on a simple architecture rather than a complete or
high-performance implementation

• Only supports fixed length records with strings and ints
• Only supports sequential scan access methods
• No NULLs
• Uses a simple iterator method, so not super efficient

GoDB Storage Layout

• Each table is stored in one file on disk, called a heap file
– Heap files are an unordered collections of records
– Only way to access records from a heap file is to scan from

beginning to end: “Sequential scan” via an iterator
• Each heap file consists of a number of fixed size heap pages
• Each heap page contains a number of fixed size tuples

• Methods in heap_file.go are used to access the contents of
the heap file

Tuples and Tuple Descriptors

• In a given heap file, each tuple has the same layout
• Layout is specified by a TupleDesc object, which

specifies the field names and types in the tuple

// FieldType is the type of a field in a tuple, e.g., its name, table, and [godb.DBType].
// TableQualifier may or may not be an empty string, depending on whether the table
// was specified in the query
type FieldType struct {

Fname string
TableQualifier string
Ftype DBType

}

// TupleDesc is "type" of the tuple, e.g., the field names and types
type TupleDesc struct {

Fields []FieldType
}

Tuples and Tuple Descriptors
(cont.)

• Tuple objects contain the values of each record in Fields
• Field is an interface, implemented by IntField and StringField
• All ints are 64 bits; all string are StringLength characters, padded

with zeros

// Tuple represents the contents of a tuple read from a database
// It includes the tuple descriptor, and the value of the fields
type Tuple struct {

Desc TupleDesc
Fields []DBValue
Rid recordID //used to track the page and position this page was read from

}

Storage Layout Diagram

HeapFile (table1)

Heap
Page 1

…

P1
Hdr

P1
T2

P1
Tn

Bytes
0 …

P2
Hdr

P2
T2

P2
Tn

Pm
Hdr

Pm
T2

Pm
Tn

…

Page

NSlots
32 bits

NUsed
32 bits

TupleDesc:
 age int
 dept int

age1
64 bits

dept1
64 bits

age2
64 bits

dept2
64 bits

Header Tuple1 Tuple2
Heap

Page 2

Heap
Page m Note: you need a way to deal with deletes!

Page size

Buffer Pool

• Buffer pool is an in-memory cache of pages
• Allows GoDB to control how much memory is used and

support tables larger than memory
• For transactions, will be responsible for implementing page-

level locking and two-phase commit (not until lab 3)

• All iterators and operators should use the buffer pool GetPage
method to access pages from heap files

• Only the heap file readPage method directly reads data from
disk

Iterators
• Each database operator (filter, project, join, etc) implements an Iterator

• Iterator() returns a function that iterates through the operator’s records
• Most operators take a child operator as a part of their constructor

• Heap file Iterator iterates through pages on disk; other operators iterate through
their child tuples
– E.g., filter iterates through child tuples, applied the filter to them, and returns satisfying tuples

type Operator interface {
Descriptor() *TupleDesc
Iterator(tid TransactionID) (func() (*Tuple, error), error)

}

func NewIntFilter(constExpr Expr,
 op BoolOp, field Expr, child Operator) (*Filter[int64], error) { … }

Iterator Implementation

func (f *Filter[T]) Iterator(tid TransactionID) (func() (*Tuple, error), error) {

childIter, _ := f.child.Iterator(tid) //childIter is current iterator state
…
return func() (*Tuple, error) {

for {
 // get child tuple from childIter
 // get tuple fields (e.g., using EvalExpr)
 // apply predicate
 // if matches, return tuple
 // else go onto next tuple
}, _

}

• Returns a function that when called returns the next
tuple

• Needs to keep state of where it was in its child

ExampleClient

hf:HeapFile bp:BufferPool

pageCache

Example
Project(hf)

f()

Iterator()Client

hf:HeapFile bp:BufferPool

pageCache

Project(hf)

f()

Iterator()

Iterator()

f2()

Example

hf:HeapFile bp:BufferPool

pageCache

Client

hf:HeapFile bp:BufferPool

pageCache

Project(hf)

f()

Iterator()

Iterator()

f2()

GetPage()

readPage() p

p

p

&p

Example
Client

Project(hf)

f()

Iterator()

Iterator()

f2()

GetPage()

readPage()

p

p

Iterator()

f3()

t

t

t’

Example

hf:HeapFile bp:BufferPool

pageCache

p

&p

Client

Deleting Records and Rids

• Consider a query like:
 DELETE FROM x WHERE f > 10
This is translated into a plan like

Heap File

Filter

Delete
Q: How does the delete
operator know which records to
delete?
A: Each record from the
HeapFile is annotated with a
record id that is used to identify
the position of the record in the
heap file to be deleted

Deleting Records and Rids

// Remove the provided tuple from the HeapFile. This method should use the
// [Tuple.Rid] field of t to determine which tuple to remove.
// This method is only called with tuples that are read from storage via the
// [Iterator] method, so you can so you can supply the value of the Rid
// for tuples as they are read via [Iterator]. Note that Rid is an empty interface,
// so you can supply any object you wish. You will likely want to identify the
// heap page and slot within the page that the tuple came from.
func (f *HeapFile) deleteTuple(t *Tuple, tid TransactionID) error {

• deleteTuple will be called by the delete operator
• Using the t.Rid object, you can clear out the position in the heap file containing

the record
• Your heapfile implementation supplies the Rid in the iterator, and so you can

identify this position however you like
• A standard Rid implementation is a page number and a slot within the page

• Recall that all pages have the same number of slots

func computeFieldSum(fileName string, td TupleDesc, sumField string
) (int, error) {

 //Create buffer pool
 bp := NewBufferPool(10)

 hf, err := NewHeapFile("myfile.dat", &td, bp)
 …
 err = hf.LoadFromCSV(CSVfile, true, ",", false)

 //find the column
 fieldNo, err := findFieldInTd(FieldType{sumField, "", IntType}, &td)

 //Start a transaction -> we will do the implementation in another lab
 tid := NewTID()
 bp.BeginTransaction(tid)
 iter, err := hf.Iterator(tid)

 //Iterate through the tuples and sum them up.
 sum := 0
 for {
 tup, err := iter()
 f := tup.Fields[fieldNo].(IntField)
 sum += int(f.Value)
 }

 bp.CommitTransaction() //commit transaction
 return sum, nil //return the value
}

Have Fun!

• Start early
• Let us know what you

find confusing on Piazza!

