
6.5830 Lecture 5

Database Internals Continued
September 18, 2024

Note on GoDB

• There is some content on GoDB that will be
presented at the help session, not lecture

• It’s extremely valuable!

Recap
Admission Control

Connection Management

Query System

Storage System

Parser

Rewriter

Planner

Executor

Optimizer

Access
Methods

Buffer
Manager

Lock
Manager

Log
Manager

Lecs
4-5

Lec 6

(Lec 8)

Lec 7 – Join Algos

Lec 4

Recap: Query Processing Steps

• Admission Control
• Query Rewriting
• Plan Formulation
• Optimization

Recap: Query Processing Steps

• Admission Control
• Query Rewriting
• Plan Formulation
• Optimization

Plan Formulation
emp (eno, ename, sal, dno)
dept (dno, dname, bldg)
kids (kno, eno, kname, bday)

SELECT ename, count(*)
FROM emp, dept, kids
AND emp.dno=dept.dno
AND kids.eno=emp.eno
AND emp.sal > 50000
AND dept.name = 'eecs'
GROUP BY ename
HAVING count(*) > 7

⨝
eno=eno

⨝
dno=dno

dept emp

kids

𝛔name=‘eecs’ 𝛔sal>50k

Πename,count

𝛂agg:count(*), group by ename

𝛔count > 7

Query Optimization

⨝
eno=eno

⨝
dno=dn

o

dept emp

kids

𝛔name=‘eecs’ 𝛔sal>50k

Πename,count

𝛂agg:count(*), group by ename

𝛔count > 7

Logical planning:
operator ordering
(exponential search
space)

Physical planning:
operator implementation
& access methods
(indexes vs heap files)

Storage model &
access methods?

Implementation?

Order?

Joins and Ordering

• Consider a nested loop join operator of tables
Outer and Inner

• for tuple1 in Outer
 for tuple2 in Inner
 if predicate(tuple1, tuple2) then
 emit join(tuple1, tuple2)

• What if Inner is itself a join result?
• Plans might be “left-deep” or “bushy”

Query Execution

• Executing a query involves chaining together a
series of operators that implement the query

• Operator types:
 scan from disk/mem

 filter records
 join records
 aggregate records

Requires a model of data
representation

⨝
starName = name

𝛔birthday…

movieStar

ΠmovieTitle

starsIn

Physical Layout

• Arrangement of records on disk / in memory
• Disk / memory are linear, tables are 2D

A B C D

1

2

3

1

2

3

How would you store the table on disk?

Knowing that you must efficiently support
inserts, deletes, and that some records
are more often read than others?

Physical Layout

• Arrangement of records on disk / in memory
• Disk / memory are linear, tables are 2D

– ”Row Major” - Row at a time

A B C D

1

2

3

Disk

0 1 2 3 4 5

6 7 8 9 10 11

1

2

3

Physical Layout

• Arrangement of records on disk / in memory
• Disk / memory are linear, tables are 2D

– ”Row Major” - Row at a time
– “Column Major” Column at a time

A B C D Disk

0 1 2 3 4 5

6 7 8 9 10 11

CBA
For now, let’s

assume row-
major!

How would you store records
on disk?

Accessing Data

• Access Method: way to read data from disk
• Heap File: unordered arrangement of records

– Arranged in pages
– You read/write/cache data in the granularity of

pages.

Hd
r

R1 R
2

R
3

R
4

Hd
r

R4 R
5

R
6

R
7

Hd
r

R8 R
9

R
1
0

R
1
1

Page 1 Page 2 Page 3

…

Header: Start offset of each record,
which parts of page are occupied, etc Get Page 3 = Page# * PageSize

Heap Scan

• Read Heap File In Stored Order
– Even with a predicate, read all records

Hd
r

R1 R
2

R
3

R
4

Hd
r

R4 R
5

R
6

R
7

Hd
r

R8 R
9

R
1
0

R
1
1

Page 1 Page 2 Page 3

…

https://clicker.mit.edu/6.5830/

Hardware (e.g., SSDs) and OS (e.g., virtual
memory) also use pages. They often are
4KB large.

Why does a database management
introduce yet another paging mechanism?

Page designs

Strawman idea: Keep track
of tuples in a page?

Any problems with this
design?

numUsed = 3

Tuple1

Tuple2

Tuple3

Page designs

Strawman idea: Keep track
of tuples in a page?

• What happens with deletes?
• What happens with variable

length tuples (e.g., variable
length strings)?

numUsed = 3

Tuple1

Tuple3

Slotted pages

Common layout scheme

• Slot array maps "slots" to tuples starting
postion

• The header keeps track of:
→ The # of used slots
→ The offset of the starting location of
the last slot used.

Header

Tuple1Tuple2

Tuple3 Tuple4

Slotted pages

How would you simplify
the layout if tuples have a
fixed length?

Do you need to store the
slot map?

Header

Tuple1Tuple2

Tuple3 Tuple4

Index

• An Index maps from a value or range of values
of some attribute to records with that value or
values

• Several types of indexes, including trees (most
commonly B+Trees) and hash indexes

API:
Lookup(value) records
Lookup(v1 .. vn) records

Value is an attribute of the table, called the “key” of the
index

→
→

Tree Index

Hdr R
1

R
2

R
3

R
4

3 2 9 4

Hd
r

R4 R
5

R
6

R
7

6 1 0 2

Hd
r

R8 R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6 8 9 9

Attrn

…

Index File

Heap File

8 9 9

Index Scan

Hdr R
1

R
2

R
3

R
4

3 2 9 4

Hd
r

R4 R
5

R
6

R
7

6 1 0 2

Hd
r

R8 R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

Traverse the
records in Attr1
order, or lookup a
range

Attr1 >= 6
&
Attr1 < 9

What is the time complexity of a tree lookup?
Note random vs sequential access!

Heap File

Clustered Index
• Order pages on disk in index order

Hdr R
1

R
2

R
3

R
4

3 2 9 4

Hd
r

R4 R
5

R
6

R
7

6 1 0 2

Hd
r

R8 R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

Attrn

…

8 9 9

Index File

Heap File

Clustered Index

Hdr R
6

R
8

R
2

R
7

0 1 2 2

Hd
r

R1
0

R
1

R
4

R
1
1

2 3 4 5

Hd
r

R4 R
9

R
3

R
8

6 8 9 9
Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

Attrn

…

8 9 9

• Order pages on disk in index order

Index File

Heap File

Eliminates random I/O for index scans
on Attr1 (but only Attr1!)

Connecting Operators: Iterator Model

⨝
starName = name

𝛔birthday…

movieStar

ΠmovieTitle

starsIn

Data flows
from bottom to
top

Each operator implements a
simple iterator interface:

 open(params)
 getNext() record
 close()

Any iterator can compose with
any other iterator

→

it1 = Scan.open(“movieStar”, …)
it2 = Filter.open(it1, bday=x, …)
it3 = Scan.open(“starsIn”, …)
it4 = Join.open(it2, it3,
 starName=name)
it5 = Proj.open(it4, movieTitle)

Where might we use a B+Tree and Index Scan?

Iterator Model
it1 = Scan.open(“movieStar”, …)
it2 = Filter.open(it1, bday=x, …)
it3 = Scan.open(“starsIn”, …)
it4 = Join.open(it2, it3,
 starName=name)
it5 = Proj.open(it4, movieTitle)

it5

it4

it3it2

it1

getNext

getNext

getNext

getNext

movieStar

starsIn“Brad
Pitt”

“Brad
Pitt”

”Ad
Astra”

(”Brad Pitt”, “Ad Astra”)

getNext

(”Brad Pitt”)

Let’s take a short break

Query Planning

• What makes a good query plan?
– Cost Estimation

• Buffer Management
• Postgres Examples

Cost Estimation

⨝
eno=eno

⨝
dno=dn

o

dept emp

kids

𝛔name=‘eecs’ 𝛔sal>50k

Πename,count

𝛂agg:count(*), group by ename

𝛔count > 7

Query optimization goal:
find plan that has lowest
cost?

What is cost?

Order?
Disk I/O (Pages Read)
Memory Accesses
CPU Cycles
Comparisons
Records Processed

Memory Hierarchy

Core1

L1 Cache

L2 Cache

Core2

L1 Cache

Core1

L1 Cache

L2 Cache

Core2

L1 Cache

L3 Cache

System Memory

Memory Bus

32 KB

256 KB

8 MB

64 GB

4 cycles

12 cycles

36 cycles

50-100ns
(~ 150-300
cycles)

SSD (Flash)
Disk

4 TB~ 1M cycles

Bandwidth vs Latency
• 1st access latency often high relative to the rate device can

stream data sequentially (bandwidth)

• RAM: 50 ns per 16 B cache line
 random access bandwidth of 16 * 1/5x10-8 = 320 MB / sec
If streaming sequentially, bandwidth 20-40 GB/sec

• Flash disk: 250 us per 4K page
 Random access bandwidth of 4K * 1/2.5x10-4= 16 MB / sec
If streaming sequentially, bandwidth 2+ GB/sec

(100x difference)

(125x difference)

Bandwidth v Latency (cont.)

• Spinning disk: 10 ms latency vs 100 MB seq bandwidth
– Random access BW per 4KB page = 400 KB/sec

• Local network: 100 us latency vs 10 GB seq bandwidth
– Random access BW per byte = 10K / sec

• Wide area net: 10 ms latency vs 1 GB seq bandwidth
– Random access BW per byte = 100 B / sec

(250x difference)

(1Mx difference)

(100Mx difference)

Important Numbers
CPU Cycles / Sec 2+ Billion (.5 nsec latency)

L1 latency 2 nsec (4 cycles)

L2 latency 6 nsec (12 cycles)

L3 latency 18 nsec (36 cycles)

Main memory latency 50 – 100 ns (150-300 cycles)

Sequential Mem Bandwidth 20-40+ GB/sec

SSD Latency 250+ usec

SSD Seq Bandwidth 2-4 + GB/sec

HD (spinning disk) latency 10 msec

HD Seq Bandwidth 100+ MB

Local Net Latency 10 – 100 usec

Local Net Bandwidth 1 – 40 Gbit /sec

Wide Area Net Latency 10 – 100 msec

Wide Area Net Bandwidth 100 – 1 Gbit / sec

Speed Analogy

… 100,000 km

10s 100m
10 msec / access

Disk

10s … 10km
100 usec / access

Flash

10s

10 nsec/access

Main Memory

Database Cost Models

• Typically try to account for both CPU and I/O
– I/O = ”input / output”, i.e., data access costs from disk

• Database algorithms try to optimize for sequential
access (to avoid massive random access penalties)

• Simplified cost model for 6.5830:
seeks (random I/Os) x random I/O time +
 sequential bytes read x sequential B/W

Example

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

Assume nested loops joins, no
indexes

100

10K
10%

1000

1000 30000

3000

SELECT * FROM emp, dept, kids
WHERE sal > 10k
AND emp.dno = dept.dno
AND emp.eid = kids.eid

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

Dept is outer in NL Join:
 1 scan of dept
 100 scans of emp (can we cache?)

 1 scan of dept:
 1 seek + 10KB / 100 MB/sec
 10 ms + .1ms = 10.1 ms
 1 scan of emp:
 1 seek + 1 MB / 100 MB/sec
 10 ms + 10 ms = 20 ms

 100 x 20 ms + 10.1 ms = 2.1001 s

WHAT IF…..
We use an index to random-seek to the 10% selection of

emp?

Instead of 1 seek + 1MB/ 100MB/sec = 20ms,
it’s 10 seeks for 10 pages (which is very lucky)?

10 seeks + 100k / 100MB/sec = 100ms + 1ms

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

Dept is inner in NL Join:

Let’s take a break and try to do this
individually

(Caching has
huge benefit!)

1000

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

Dept is inner in NL Join:
 1 scan of emp
 1K scans of dept (can we cache?)

 Load dept (and 1k cached reads)
 1 seek + 10KB / 100 MB/sec
 10 ms + .1ms = 10.1 ms
 1 scan of emp:
 1 seek + 1 MB / 100 MB/sec
 10 ms + 10 ms = 20 ms

 20ms + 10.1 ms = 30.1 ms
(vs 2.1001s previously; ~70x faster!)

(Caching has
huge benefit!)

1000

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

2nd join – kids is inner

How much time does 2nd join take?
Again, take a moment to do it out

1000

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

2nd join – kids is inner
 1000 scans x
 1 seek + 3 MB / 100 MB / sec

1000 x (0.01 + 0.03) = 40 sec

1000

Many query planners will not
consider plans where “inner” (e.g.,
kids) is not a base relation – so
called “left deep” plans

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

What if dept were stored on a local
network machine?

Local network: 100 us latency, 10 GB
seq bandwidth
(assume data loading costs on remote
machine are negligible)

1000

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

Dept is inner in NL Join:
 1 scan of emp
 1K scans of dept (cached)

 Load dept:
 1 request + 10KB / 10 GB/sec
 0.01 ms + .001ms = 0.011 ms
 1 scan of emp:
 1 seek + 1 MB / 100 MB/sec
 10 ms + 10 ms = 20 ms

 0.011 ms + 20 ms = 20.011 ms
 (vs 30.1ms when dept is on disk)

1000

Are we oversimplifying?

Buffer Pool

• Buffer pool is a cache for memory access.
Caches pages of files / indices.

• When page is in buffer pool, don't need to
read from disk

• Updates can also be cached
– Discuss more w/ transactions

Buffer Pool

Memory region organized as an array of fixed
size pages. An array entry is called a frame.

Dirty pages are kept and not written to disk
immediately (transaction processing).

Page1

Page6

Page9

frame4

frame5

frame6

Page1 Page2 Page3 Page4 Page5 Page6

Page7 Page8 Page9 Page10 PageN…

Buffer Pool

frame1

frame2

frame3

frame4

frame5

frame6

Page1 Page2 Page3 Page4 Page5 Page6

Page7 Page8 Page9 Page10 PageN…

The page table keeps track of what
pages are in memory and maintains
additional meta-data per page:
• Dirty Flag
• Pin/Reference Counter
• Latches
• Sometimes read/write locks

(sometimes in a separate
component: the lock manager)

Page1

Page6

Page9

Page5

Locks VS. Latches

• Locks:
– Protects the database's logical contents from other

transactions.
– Held for transaction duration
– Need to be able to rollback changes.

• Latches (Mutex)
– Protects the critical sections of internal data structure from

other threads.
– Held for operation duration.
– Do not need to be able to rollback changes

Eviction Policy

• Least Recently Used (LRU)
– Evict oldest page accessed
– Intuitively, makes sense because recently accessed

data is likely to be accessed again

• Is LRU always optimal?

Is LRU Always Optimal?

• No! What if some relation doesn't fit into
memory?

Consider: 2 pages RAM, 3 pages of a relation R -- a, b c, accessed sequentially
in a loop

Access

RAM Page 1 2 3 4
1 a a c c

2 b b a

LRU Always misses!
Databases do not comply with some traditional OS assumptions

Consider MRU

Consider: 2 pages RAM, 3 pages of a relation R -- a, b c, accessed sequentially
in a loop

Access

RAM
Page

1 (a) 2 (b) 3 (c) 4 (a) 5 (b) 6 (c) 7 (a) 8 (b)

1 a a a A - hit b b b B - hit

2 b c c c C – hit a a

MRU hits on 1 out of 2!

Better Policies

What other policies can you think of?

Better Policies

• LRU-K: Keep the last k accesses. Estimate when
the next one will happen

• Query-local-policies: Queries often know
better what the access pattern is. Leverage it
(e.g., Postgres maintains a small ring buffer
that is private to the query.

• Priority hints: For example, set a priority hint
for the top index pages rather data pages

Buffer Pool Optimization

What other optimizations can you think of?

Buffer Pool Optimizations

• Multiple Buffer Pools
• Pre-Fetching
• Scan Sharing
• Buffer Pool Bypass

Scan Sharing

• How does Scan Sharing work?
• PostgreSQL:
synchronize_seqscans (boolean) This
allows sequential scans of large tables to
synchronize with each other, so that concurrent
scans read the same block at about the same time
and hence share the I/O workload. …. This can
result in unpredictable changes in the row ordering
returned by queries that have no ORDER BY clause.

Postgres Query Plans
create table dept (dno int primary key, bldg int);
insert into dept (dno, bldg) select x.id, (random() * 10)::int FROM
generate_series(0,100000) AS x(id);

create table emp (eno int primary key, dno int references dept(dno), sal int,
ename varchar);
insert into emp (eno, dno, sal, ename) select x.id, (random() * 100000)::int,
(random() * 55000)::int, 'emp' || x.id from generate_series(0,10000000) AS
x(id);

create table kids (kno int primary key, eno int references emp(eno), kname
varchar);
insert into kids (kno,eno,kname) select x.id, (random() * 1000000)::int, 'kid' ||
x.id from generate_series(0,3000000) AS x(id);

Postgres Costs
explain select * from emp;
 QUERY PLAN
--
 Seq Scan on emp (cost=0.00..163696.15 rows=10000115 width=22)
(1 row)

test=# select relpages from pg_class where relname = 'emp';
 relpages

 63695
(1 row)

test=# show cpu_tuple_cost;
 cpu_tuple_cost

 0.01
(1 row)

Cost =
 cpu_tuple_cost * rows + pages =
 .01 * 10000115 + 63695 = 163696.15

Postgres Plans
SELECT * FROM emp, dept, kids
WHERE sal > 10000
AND emp.dno = dept.dno
AND emp.eno = kids.eno

 QUERY PLAN

 Hash Join (cost=342160.30..527523.82 rows=2457233 width=48)
 Hash Cond: (emp.dno = dept.dno)
 -> Hash Join (cost=339076.28..479202.29 rows=2457233 width=40)
 Hash Cond: (kids.eno = emp.eno)
 -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
 -> Hash (cost=188696.44..188696.44 rows=8190867 width=22)
 -> Seq Scan on emp (cost=0.00..188696.44 rows=8190867 width=22)
 Filter: (sal > 10000)
 -> Hash (cost=1443.01..1443.01 rows=100001 width=8)
 -> Seq Scan on dept (cost=0.00..1443.01 rows=100001 width=8)
(10 rows)

Study Break

• Assuming disk can do 100 MB/sec I/O, and 10ms / seek
• And the following schema:

grades (cid int, g_sid int, grade char(2))
students (s_int, name char(100))

1. Estimate time to sequentially scan grades, assuming it contains
1M records (Consider: field sizes, headers)

2. Estimate time to join these two tables, using nested loops,
assuming students fits in memory but grades does not, and
students contains 10K records.

Seq Scan Grades

grades (cid int, g_sid int, grade char(2))
• 8 bytes (cid) + 8 bytes (g_sid) + 2 bytes
(grade) + 4 bytes (header) = 22 bytes

• 22 x 1M = 22 MB / 100 MB/sec = .22 sec + 10ms seek

➔ .23 sec

NL Join Grades and Students
grades (cid int, g_sid int, grade char(2))
students (s_int, name char(100))

10 K students x (100 + 8 + 4 bytes) = 1.1 MB

Students Inner (Preferred)
• Cache students in buffer pool in memory: 1.1/100 s = .011 s
• One pass over students (cached) for each grade (no additional cost beside caching)
• Time to scan grades (previous slide) = .23 s
➔ .244 s

Grades Inner
• One pass over grades for each student, at .22 sec / pass, plus one seek at 10 ms (.01 sec) ➔ .23 sec /

pass
➔ 2300 seconds overall

• (Time to scan students is .011 s, so negligible)

