
6.5830 Lecture 5

Database Internals Continued
September 20, 2023

What is GoDB?
• A basic database system
• SQL Front-end (Provided for later labs)

– Heap files (Lab 1)
– Buffer Pool (Labs 1)
– Basic Operators (Labs 1 & 2)

– Scan, Filter, JOIN, Aggregate
– Transactions (Lab 3)
– Recovery (Lab 3)
– Query optimizer
– B-Tree Indexes

Start Early: It looks trivial
until you get into it

Before
Starting

Lab 1

Finishing
Lab 1

ExampleClient

hf:HeapFile bp:BufferPool

pageCache

Example
Project(hf)

f()

Iterator()Client

hf:HeapFile bp:BufferPool

pageCache

Project(hf)

f()

Iterator()

Iterator()

f2()

Example

hf:HeapFile bp:BufferPool

pageCache

Client

hf:HeapFile bp:BufferPool

pageCache

Project(hf)

f()

Iterator()

Iterator()

f2()

GetPage()

readPage() p

p

p

&p

Example
Client

Project(hf)

f()

Iterator()

Iterator()

f2()

GetPage()

readPage()

p

p

Iterator()

f3()

t

t

t’

Example

hf:HeapFile bp:BufferPool

pageCache

p

&p

Client

Deleting Records and Rids

• Consider a query like:
 DELETE FROM x WHERE f > 10
This is translated into a plan like

Heap File

Filter

Delete
Q: How does the delete
operator know which records to
delete?
A: Each record from the
HeapFile is annotated with a
record id that is used to identify
the position of the record in the
heap file to be deleted

Deleting Records and Rids

// Remove the provided tuple from the HeapFile. This method should use the
// [Tuple.Rid] field of t to determine which tuple to remove.
// This method is only called with tuples that are read from storage via the
// [Iterator] method, so you can so you can supply the value of the Rid
// for tuples as they are read via [Iterator]. Note that Rid is an empty interface,
// so you can supply any object you wish. You will likely want to identify the
// heap page and slot within the page that the tuple came from.
func (f *HeapFile) deleteTuple(t *Tuple, tid TransactionID) error {

• deleteTuple will be called by the delete operator
• Using the t.Rid object, you can clear out the position in the heap file containing

the record
• Your heapfile implementation supplies the Rid in the iterator, and so you can

identify this position however you like
• A standard Rid implementation is a page number and a slot within the page

• Recall that all pages have the same number of slots

func computeFieldSum(fileName string, td TupleDesc, sumField string
) (int, error) {

 //Create buffer pool
 bp := NewBufferPool(10)

 hf, err := NewHeapFile("myfile.dat", &td, bp)
 …
 err = hf.LoadFromCSV(CSVfile, true, ",", false)

 //find the column
 fieldNo, err := findFieldInTd(FieldType{sumField, "", IntType}, &td)

 //Start a transaction -> we will do the implementation in another lab
 tid := NewTID()
 bp.BeginTransaction(tid)
 iter, err := hf.Iterator(tid)

 //Iterate through the tuples and sum them up.
 sum := 0
 for {
 tup, err := iter()
 f := tup.Fields[fieldNo].(IntField)
 sum += int(f.Value)
 }

 bp.CommitTransaction() //commit transaction
 return sum, nil //return the value
}

Plan for Next Few Lectures
Admission Control

Connection Management

Query System

Parser

Rewriter

Planner

Executor

Optimizer

Access
Methods

Buffer
Manager

Lock
Manager

Log
Manager

Today
+Lec 5

Lec 6

(Lec 9)

Lec 7 – Join Algos

Today

Query Processing Steps

• Admission Control
• Query Rewriting
• Plan Formulation (SQL à Tree)
• Optimization

Connecting Operators: Iterator
Model

⨝
starName = name

𝛔birthday…

movieStar

ΠmovieTitle

starsIn

Data flows
from bottom to
top

Each operator implements a
simple iterator interface:

 open(params)
 getNext() à record
 close() à cleanup

Any iterator can compose with
any other iterator

it1 = Scan.open(“movieStar”, …)
it2 = Filter.open(it1, bday=x, …)
it3 = Scan.open(“starsIn”, …)
it4 = Join.open(it2, it3,
 starName=name)
it5 = Proj.open(it4, movieTitle)

Iterator Model
it1 = Scan.open(“movieStar”, …)
it2 = Filter.open(it1, bday=x, …)
it3 = Scan.open(“starsIn”, …)
it4 = Join.open(it2, it3,
 starName=name)
it5 = Proj.open(it4, movieTitle)

it5

it4

it3it2

it1

getNext

getNext

getNext

getNext

movieStar

starsIn“Brad
Pitt”

“Brad
Pitt”

”Ad
Astra”

(”Brad Pitt”, “Ad Astra”)

getNext

(”Brad Pitt”)

GoDB Iterator
⨝

starName = name

𝛔birthday…

movieStar

ΠmovieTitle

starsIn

Data flows
from bottom
to top

hf1, _ := NewHeapFile(MovieStarsFile,…)
filt, _ := NewIntFilter(&ConstExpr{IntField{..}, IntType}, OpGt, &fieldExp, hf1)
hf2, _ := NewHeapFile(StarsInFile, …)
join, _ := NewStringEqJoin (filt, &leftField, hf2, &rightField, 100)
proj, _ := NewProjectOp([]Expr{&fieldExpr}, outNames, false, join)
iter, _ := proj.Iterator(tid)
for {
 tup, err := iter()
 if err != nil { t.Errorf(err.Error())}
 if tup == nil {
 break
 }

///do something with tup
}

This Lecture

• What makes a good query plan?
– Cost Estimation

• Buffer Management
• Postgres Examples

Cost Estimation

⨝
eno=eno

⨝
dno=dno

dept emp

kids

𝛔name=‘eecs’ 𝛔sal>50k

Πename,count

𝛂agg:count(*), group by ename

𝛔count > 7

Query optimization goal:
find plan that has lowest
cost?

What is cost?

Order?
Disk I/O (Pages Read)
Memory Accesses
CPU Cycles
Comparisons
Records Processed

Memory Hierarchy

Core1

L1 Cache

L2 Cache

Core2

L1 Cache

Core1

L1 Cache

L2 Cache

Core2

L1 Cache

L3 Cache

System Memory

Memory Bus

32 KB

256 KB

8 MB

64 GB

4 cycles

12 cycles

36 cycles

50-100ns
(~ 150-300
cycles)

SSD (Flash)
Disk

4 TB

Bandwidth vs Latency
• 1st access latency often high relative to the rate

device can stream data sequentially (bandwidth)

• RAM: 50 ns per 16 B cache line
à random access bandwidth of 16 * 1/5x10-8 = 320 MB / sec

If streaming sequentially, bandwidth 20-40 GB/sec

• Flash disk: 250 us per 4K page
à Random access bandwidth of 4K * 1/2.5x10-4= 16 MB / sec
If streaming sequentially, bandwidth 2+ GB/sec

(100x difference)

(125x difference)

Bandwidth v Latency (cont.)

• Spinning disk: 10 ms latency vs 100 MB seq bandwidth
– Random access BW per 4KB page = 400 KB/sec

• Local network: 100 us latency vs 10 GB seq bandwidth
– Random access BW per byte = 10K / sec

• Wide area net: 10 ms latency vs 1 GB seq bandwidth
– Random access BW per byte = 100 B / sec

(250x difference)

(1Mx difference)

(100Mx difference)

Important Numbers
CPU Cycles / Sec 2+ Billion (.5 nsec latency)

L1 latency 2 nsec (4 cycles)

L2 latency 6 nsec (12 cycles)

L3 latency 18 nsec (36 cycles)

Main memory latency 50 – 100 ns (150-300 cycles)

Sequential Mem Bandwidth 20-40+ GB/sec

SSD Latency 250+ usec

SSD Seq Bandwidth 2-4 + GB/sec

HD (spinning disk) latency 10 msec

HD Seq Bandwidth 100+ MB

Local Net Latency 10 – 100 usec

Local Net Bandwidth 1 – 40 Gbit /sec

Wide Area Net Latency 10 – 100 msec

Wide Area Net Bandwidth 100 – 1 Gbit / sec

Speed Analogy

… 100,000 km

10s 100m
10 msec / access

Disk

10s … 10km
100 usec / access

Flash

10s

10 nsec/access

Main Memory

Database Cost Models

• Typically try to account for both CPU and I/O
– I/O = ”input / output”, i.e., data access costs from disk

• Database algorithms try to optimize for sequential
access (to avoid massive random access penalties)

• Simplified cost model for 6.5830:
seeks (random I/Os) x random I/O time +
 sequential bytes read x sequential B/W

Example

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

Assume nested loops joins, no
indexes

100

10K
10%

1000

1000 30000

3000

SELECT * FROM emp, dept, kids
WHERE sal > 10k
AND emp.dno = dept.dno
AND emp.eid = kids.eid

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

Dept is outer in NL Join:
 1 scan of dept
 100 scans of emp (can we cache?)

 1 scan of dept:
 1 seek + 10KB / 100 MB/sec
 10 ms + .1ms = 10.1 ms
 1 scan of emp:
 1 seek + 1 MB / 100 MB/sec
 10 ms + 10 ms = 20 ms

 100 x 20 ms + 10.1 ms = 2.1001 s

WHAT IF…..
We use an index to random-seek to the 10% selection of

emp?

Instead of 1 seek + 1MB/ 100MB/sec = 20ms,
it’s 10 seeks for 10 pages (which is very lucky)?

10 seeks + 100k / 100MB/sec = 100ms + 1ms

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

Dept is inner in NL Join:

Let’s take a break and try to do this
individually

(Caching has
huge benefit!)

1000

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

Dept is inner in NL Join:
 1 scan of emp
 1K scans of dept (can we cache?)

 Load dept (and 1k cached reads)
 1 seek + 10KB / 100 MB/sec
 10 ms + .1ms = 10.1 ms
 1 scan of emp:
 1 seek + 1 MB / 100 MB/sec
 10 ms + 10 ms = 20 ms

 20ms + 10.1 ms = 30.1 ms
(vs 2.1001s previously; ~70x faster!)

(Caching has
huge benefit!)

1000

Actually…
remember we
have 10 pages

of RAM!

What’s wrong
here?

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

2nd join – kids is inner

How much time does 2nd join take?
Again, take a moment to do it out

1000

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

2nd join – kids is inner
 1000 scans x
 1 seek + 3 MB / 100 MB / sec

1000 x (0.01 + 0.03) = 40 sec

1000

Many query planners will not
consider plans where “inner” (e.g.,
kids) is not a base relation – so
called “left deep” plans

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

What if dept were stored on a local
network machine?

Local network: 100 us latency, 10 GB
seq bandwidth
(assume data loading costs on remote
machine are negligible)

1000

Example w/ Simple Cost Model
seeks (random disk I/Os) x random I/O time +
sequential bytes read / sequential disk B/W

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

Spinning Disk:
10 ms / random access page
100 MB/sec sequential B/W

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

Dept is inner in NL Join:
 1 scan of emp
 1K scans of dept (cached)

 Load dept:
 1 request + 10KB / 10 GB/sec
 0.01 ms + .001ms = 0.011 ms
 1 scan of emp:
 1 seek + 1 MB / 100 MB/sec
 10 ms + 10 ms = 20 ms

 0.011 ms + 20 ms = 20.011 ms
 (vs 30.1ms when dept is on disk)

1000

Are we oversimplifying?

Buffer Pool

• Buffer pool is a cache for memory
access. Caches pages of files / indices.

• When page is in buffer pool, don't need to
read from disk

• Updates can also be cached
– Discuss more w/ transactions

Buffer Pool

Memory region organized as an array of fixed
size pages. An array entry is called a frame.

Dirty pages are kept and not written to disk
immediately (transaction processing).

Page1

Page6

Page9

frame4

frame5

frame6

Page1 Page2 Page3 Page4 Page5 Page6

Page7 Page8 Page9 Page10 PageN…

Buffer Pool

frame1

frame2

frame3

frame4

frame5

frame6

Page1 Page2 Page3 Page4 Page5 Page6

Page7 Page8 Page9 Page10 PageN…

The page table keeps track of what
pages are in memory and maintains
additional meta-data per page:
• Dirty Flag
• Pin/Reference Counter
• Latches
• In OpsDB also responsible for

read/write locks (normally
separate component lock manager)

Page1

Page6

Page9

Page5

LOCKS VS. LATCHES

• Locks:
– Protects the database's logical contents from other

transactions.
– Held for transaction duration
– Need to be able to rollback changes.

• Latches (Mutex)
– Protects the critical sections of internal data structure from

other threads.
– Held for operation duration.
– Do not need to be able to rollback changes

Eviction Policy

• Least Recently Used (LRU)
– Evict oldest page accessed
– Intuitively, makes sense because recently accessed

data is likely to be accessed again

• Is LRU always optimal?

Is LRU Always Optimal?

• No! What if some relation doesn't fit into
memory?

Consider: 2 pages RAM, 3 pages of a relation R -- a, b c, accessed sequentially
in a loop

Access

RAM Page 1 2 3 4

1 a a c c

2 b b a

LRU Always misses!
Databases do not comply with some traditional OS assumptions

Consider MRU

Consider: 2 pages RAM, 3 pages of a relation R -- a, b c, accessed sequentially
in a loop

Access

RAM
Page

1 (a) 2 (b) 3 (c) 4 (a) 5 (b) 6 (c) 7 (a) 8 (b)

1 a a a A - hit b b b B - hit

2 b c c c C – hit a a

MRU hits on 1 out of 2!

Better Policies

What other policies can you think of?

Better Policies

• LRU-K: Keep the last k accesses. Estimate
when the next one will happen

• Query-local-policies: Queries often know
better what the access pattern is. Leverage it
(e.g., Postgres maintains a small ring buffer
that is private to the query.

• Priority hints: For example, set a priority hint
for the top index pages rather data pages

Buffer Pool Optimization

What other optimizations can you think of?

Buffer Pool Optimizations

• Multiple Buffer Pools
• Pre-Fetching
• Scan Sharing
• Buffer Pool Bypass

Scan Sharing

• How does Scan Sharing work?
• PostgreSQL:
synchronize_seqscans (boolean)
This allows sequential scans of large tables to
synchronize with each other, so that
concurrent scans read the same block at
about the same time and hence share the I/O
workload. …. This can result in unpredictable
changes in the row ordering returned by
queries that have no ORDER BY clause.

Postgres Query Plans
create table dept (dno int primary key, bldg int);

insert into dept (dno, bldg) select x.id, (random() * 10)::int FROM
generate_series(0,100000) AS x(id);

create table emp (eno int primary key, dno int references dept(dno), sal int,
ename varchar);

insert into emp (eno, dno, sal, ename) select x.id, (random() * 100000)::int,
(random() * 55000)::int, 'emp' || x.id from generate_series(0,10000000) AS
x(id);

create table kids (kno int primary key, eno int references emp(eno), kname
varchar);

insert into kids (kno,eno,kname) select x.id, (random() * 1000000)::int, 'kid' ||
x.id from generate_series(0,3000000) AS x(id);

Postgres Costs
explain select * from emp;
 QUERY PLAN
--
 Seq Scan on emp (cost=0.00..163696.15 rows=10000115 width=22)
(1 row)

test=# select relpages from pg_class where relname = 'emp';
 relpages

 63695
(1 row)

test=# show cpu_tuple_cost;
 cpu_tuple_cost

 0.01
(1 row)

Cost =
 cpu_tuple_cost * rows + pages =
 .01 * 10000115 + 63695 = 163696.15

Postgres Plans
SELECT * FROM emp, dept, kids
WHERE sal > 10000
AND emp.dno = dept.dno
AND emp.eno = kids.eno

QUERY PLAN

 Hash Join (cost=342160.30..527523.82 rows=2457233 width=48)
 Hash Cond: (emp.dno = dept.dno)
 -> Hash Join (cost=339076.28..479202.29 rows=2457233 width=40)
 Hash Cond: (kids.eno = emp.eno)
 -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
 -> Hash (cost=188696.44..188696.44 rows=8190867 width=22)
 -> Seq Scan on emp (cost=0.00..188696.44 rows=8190867 width=22)
 Filter: (sal > 10000)
 -> Hash (cost=1443.01..1443.01 rows=100001 width=8)
 -> Seq Scan on dept (cost=0.00..1443.01 rows=100001 width=8)
(10 rows)

Study Break
• Assuming disk can do 100 MB/sec I/O, and 10ms / seek
• And the following schema:

grades (cid int, g_sid int, grade char(2))
students (s_int, name char(100))

1. Estimate time to sequentially scan grades, assuming it
contains 1M records (Consider: field sizes, headers)

2. Estimate time to join these two tables, using nested loops,
assuming students fits in memory but grades does not, and
students contains 10K records.

Seq Scan Grades

grades (cid int, g_sid int, grade char(2))
• 8 bytes (cid) + 8 bytes (g_sid) + 2 bytes
(grade) + 4 bytes (header) = 22 bytes

• 22 x 1M = 22 MB / 100 MB/sec = .22 sec + 10ms seek
è .23 sec

NL Join Grades and Students
grades (cid int, g_sid int, grade char(2))
students (s_int, name char(100))

10 K students x (100 + 8 + 4 bytes) = 1.1 MB

Students Inner (Preferred)
• Cache students in buffer pool in memory: 1.1/100 s = .011 s
• One pass over students (cached) for each grade (no additional cost beside caching)
• Time to scan grades (previous slide) = .23 s
è .244 s

Grades Inner
• One pass over grades for each student, at .22 sec / pass, plus one seek at 10 ms (.01

sec) è .23 sec / pass
è 2300 seconds overall

• (Time to scan students is .011 s, so negligible)

Today: Access Methods

• Access method: way to access the records of
the database

• 3 main types:
– Heap file / heap scan
– Hash index / index lookup
– B+Tree index / index lookup / scan ß next time

• Many alternatives: e.g., R-trees ß next time

• Each has different performance tradeoffs

Design Considerations for Indexes
• What attributes to index?

– Why not index everything?

• Index structure:
– Leaves as data

• Only one index?
• “Primary Index”

– Leaves as pointers to heap file
• “Secondary Index”
• Clustered vs unclustered

In 6.5830 we will use secondary
indexes, and distinguish between
clustered and unclustered

Primary
Index

R1
R2

R3
R4

…Data

Secondary
Index

R1
R2

R3
R4

…

…Pointer
s

Heap
File

Tree Index

Hdr R
1

R
2

R
3

R
4

3 2 9 4

H
d
r

R
4

R
5

R
6

R
7

6 1 0 2

H
d
r

R
8

R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6 8 9 9

Attrn

…

Index File

Heap File

8 9 9

Index Scan

Hdr R
1

R
2

R
3

R
4

3 2 9 4

H
d
r

R
4

R
5

R
6

R
7

6 1 0 2

H
d
r

R
8

R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

Traverse the
records in Attr1
order, or lookup a
range

Attr1 >= 6
&
Attr1 < 9

Note random access! – this is an “unclustered” index

Heap File

Costs of Random Access
• Consider an SSD with 100 usec latency, 1 GB/sec BW
• Query accesses B bytes, R bytes per record, whole table is T bytes
• Seq scan time S = T / 1GB/sec
• Rand access via index time = 100 usec * B/R + B / 1GB/sec
• Suppose R is 100 bytes, T is 10 GB

• When is it cheaper to scan than do random lookups via index?

100x10-6 * B / 100 + B/1x109 > 10x109 / 1x109
1x10-6B + 1x10-9B > 10
B > 9.99x106

For scans of larger than 10 MB, cheaper to
scan entire 10 GB table than to use index

Entire TablePortion Read
(B bytes)

T
bytes

Clustered Index
• Order pages on disk in index order

Hdr R
1

R
2

R
3

R
4

3 2 9 4

H
d
r

R
4

R
5

R
6

R
7

6 1 0 2

H
d
r

R
8

R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

…

8 9 9

Index File

Heap File

Clustered Index

Hdr R
6

R
8

R
2

R
7

0 1 2 2

H
d
r

R
1
0

R
1

R
4

R
1
1

2 3 4 5

H
d
r

R
4

R
9

R
3

R
8

6 8 9 9Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

…

8 9 9

• Order pages on disk in index order

Index File

Heap File

Per record random I/O à per page random
I/O for index scans on Attr1 (but only Attr1!)

Benefit of Clustering
• Consider an SSD with 100 usec latency, 1 GB/sec BW
• Query accesses B bytes, R bytes per record, whole table is T bytes
• Pages are P bytes
• Seq scan time S = T / 1GB/sec
• Clustered index access time = 100 usec * B/PR + B / 1GB/sec
• Suppose R is 100 bytes, T is 10 GB, P is 1 MB

• When is it cheaper to scan than do random lookups via clustered index?

100x10-6 * B / 1x106 + B/1x109 > 10x109 / 1x109
1x10-12B + 1x10-9B > 10
B > 9.99x109

For scans of larger than 9.9 GB, cheaper to
scan entire 10 GB table than to use clustered

index

