
6.5830 Lecture 6

September 25, 2023
Buffer pool & cost estimation ctd. and indexing

Florent Willems, “The Accountant”

Buffer Pool Optimizations

• Multiple Buffer Pools
• Pre-Fetching
• Scan Sharing
• Buffer Pool Bypass

Scan Sharing

• How does Scan Sharing work?
• PostgreSQL:
synchronize_seqscans (Boolean)

• This allows sequential scans of large tables to
synchronize with each other, so that concurrent
scans read the same block at about the same
time and hence share the I/O workload. …. This
can result in unpredictable changes in the row
ordering returned by queries that have no ORDER
BY clause. Why?

Postgres Query Plans
create table dept (
 dno int primary key,
 bldg int);

create table emp (
 eno int primary key,
 dno int references dept(dno),
 sal int,
 ename varchar);

create table kids (
 kno int primary key,
 eno int references emp(eno),
 kname varchar);

insert into dept (dno, bldg)
select x.id, (random() * 10)::int
FROM generate_series(0,100000) AS x(id);

insert into emp (eno, dno, sal, ename)
select x.id,
 (random() * 100000)::int,
 (random() * 55000)::int,
 'emp' || x.id
 from generate_series(0,10000000) AS x(id);

insert into kids (kno,eno,kname)
select x.id,
 (random() * 1000000)::int,
 'kid' || x.id
 from generate_series(0,3000000) AS x(id);

Postgres Costs
explain select * from emp;
 QUERY PLAN
--
 Seq Scan on emp (cost=0.00..163696.15 rows=10000115 width=22)
(1 row)

test=# select relpages from pg_class where relname = 'emp';
 relpages

 63695
(1 row)

test=# show cpu_tuple_cost;
 cpu_tuple_cost

 0.01
(1 row)

Cost =
 cpu_tuple_cost * rows + pages =
 .01 * 10000115 + 63695 = 163696.15

Postgres Plans
SELECT * FROM emp, dept, kids
WHERE sal > 10000
AND emp.dno = dept.dno
AND emp.eno = kids.eno

QUERY PLAN

 Hash Join (cost=342160.30..527523.82 rows=2457233 width=48)
 Hash Cond: (emp.dno = dept.dno)
 -> Hash Join (cost=339076.28..479202.29 rows=2457233 width=40)
 Hash Cond: (kids.eno = emp.eno)
 -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
 -> Hash (cost=188696.44..188696.44 rows=8190867 width=22)
 -> Seq Scan on emp (cost=0.00..188696.44 rows=8190867 width=22)
 Filter: (sal > 10000)
 -> Hash (cost=1443.01..1443.01 rows=100001 width=8)
 -> Seq Scan on dept (cost=0.00..1443.01 rows=100001 width=8)
(10 rows)

• Assuming disk can do 100 MB/sec I/O, and 10ms / seek
• And the following schema:

grades (cid int, g_sid int, grade char(2))
students (s_int, name char(100))

1. Estimate time to sequentially scan grades, assuming it
contains 1M records (Consider: field sizes, headers)

2. Estimate time to join these two tables, using nested loops,
assuming students fits in memory but grades does not, and
students contains 10K records.

https://clicker.mit.edu/6.5830/

• Assuming disk can do 100 MB/sec I/O, and 10ms / seek
• And the following schema:

grades (cid int, g_sid int, grade char(2))
students (s_int, name char(100))

1. Estimate time to sequentially scan grades, assuming it
contains 1M records (Consider: field sizes, headers (4B))

https://clicker.mit.edu/6.5830/

(A) 21 seconds
(B) 23 seconds
(C) 25 seconds
(D) I don’t know

Seq Scan Grades

grades (cid int, g_sid int, grade char(2))
• 8 bytes (cid) + 8 bytes (g_sid) + 2 bytes
(grade) + 4 bytes (header) = 22 bytes

• 22 x 1M = 22 MB / 100 MB/sec = .22 sec + 10ms seek
è .23 sec

• Assuming disk can do 100 MB/sec I/O, and 10ms / seek
• And the following schema:

grades (cid int, g_sid int, grade char(2))
students (s_int, name char(100))

2. Estimate the time to join these two tables, using nested loops,
assuming students fits in memory but grades does not, and students
contains 10K records (grades contains 1M records).

https://clicker.mit.edu/6.5830/

(A) 0.244 s
(B) 2300.0 s
(C) 4000.0 s
(D) I don’t know.

NL Join Grades and Students
grades (cid int, g_sid int, grade char(2))
students (s_int, name char(100))

10 K students x (100 + 8 + 4 bytes) = 1.1 MB

Students Inner (Preferred)
• Cache students in buffer pool in memory: 1.1/100 s = .011 s
• One pass over students (cached) for each grade (no additional cost beside caching)
• Time to scan grades (previous slide) = .23 s
è .244 s

Grades Inner
• One pass over grades for each student, at .22 sec / pass, plus one seek at 10 ms (.01

sec) è .23 sec / pass
è 2300 seconds overall

• (Time to scan students is .011 s, so negligible)

Today: Access Methods

• Access method: way to access the records of
the database

• 3 main types:
– Heap file / heap scan
– Hash index / index lookup
– B+Tree index / index lookup / scan ß next time

• Many alternatives: e.g., R-trees ß next time

• Each has different performance tradeoffs

Design Considerations for Indexes

Design Considerations for Indexes
• What attributes to index?
– Why not index everything?

• Index structure:
– Leaves as data
• Only one index?
• “Primary Index” (no duplicates)

– Leaves as pointers to heap file
• “Secondary Index”
• Clustered vs unclustered

In 6.5830 we will use secondary
indexes, and distinguish between
clustered and unclustered

Primary
Index

R1 R2 R3 R4 …Data

Secondary
Index

R1 R2 R3 R4 …

…Pointers

Heap File

Tree Index

Hdr R
1

R
2

R
3

R
4

3 2 9 4

H
d
r

R
4

R
5

R
6

R
7

6 1 0 2

H
d
r

R
8

R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6 8 9 9

Attrn

…

Index File

Heap File

8 9 9

Index Scan

Hdr R
1

R
2

R
3

R
4

3 2 9 4

H
d
r

R
4

R
5

R
6

R
7

6 1 0 2

H
d
r

R
8

R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

Traverse the records
in Attr1 order, or
lookup a range

Attr1 >= 6 &
Attr1 < 9

Note random access! – this is an “unclustered” index

Heap File

Costs of Random Access
https://clicker.mit.edu/6.5830/

• Consider an SSD with 100 usec latency, 1 GB/sec BW
• Query accesses B bytes, R bytes per record, whole table is T bytes
• Seq scan time S = T / 1GB/sec
• Rand access via index time = 100 usec * B/R + B / 1GB/sec
• Suppose R is 100 bytes, T is 10 GB

When is it cheaper to scan than do random lookups via index?

(a) Scans larger than ≈1MB (0.01%)
(b) Scans larger than ≈10MB (0.1%)
(c) Scans larger than ≈100MB (1%)
(d) Scans larger than ≈1GB (10%)

Entire TablePortion Read
(B bytes)

T bytes

Costs of Random Access
• Consider an SSD with 100 usec latency, 1 GB/sec BW
• Query accesses B bytes, R bytes per record, whole table is T bytes
• Seq scan time S = T / 1GB/sec
• Rand access via index time = 100 usec * B/R + B / 1GB/sec
• Suppose R is 100 bytes, T is 10 GB

• When is it cheaper to scan than do random lookups via index?

100x10-6 * B / 100 + B/1x109 > 10x109 / 1x109
1x10-6B + 1x10-9B > 10
B > 9.99x106

For scans of larger than 10 MB, cheaper to scan
entire 10 GB table than to use index

Entire TablePortion Read
(B bytes)

T bytes

Clustered Index
• Order pages on disk in index order

Hdr R
1

R
2

R
3

R
4

3 2 9 4

H
d
r

R
4

R
5

R
6

R
7

6 1 0 2

H
d
r

R
8

R
9

R
1
0

R
1
1

9 8 2 5Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

…

8 9 9

Index File

Heap File

Clustered Index

Hdr R
6

R
8

R
2

R
7

0 1 2 2

H
d
r

R
1
0

R
1

R
4

R
1
1

2 3 4 5

H
d
r

R
4

R
9

R
3

R
8

6 8 9 9Attr1

<3 ≥3,
<5

≥5,
<7

≥8,
9

0 1 2 2 2 3 4 5 6

…

8 9 9

• Order pages on disk in index order

Index File

Heap File

Per record random I/O à per page random I/O
for index scans on Attr1 (but only Attr1!)

Benefit of Clustering
• Consider an SSD with 100 usec latency, 1 GB/sec BW
• Query accesses B bytes, R bytes per record, whole table is T bytes
• Pages are P bytes
• Seq scan time S = T / 1GB/sec
• Clustered index access time = 100 usec * B/PR + B / 1GB/sec
• Suppose R is 100 bytes, T is 10 GB, P is 1 MB

• When is it cheaper to scan than do random lookups via clustered index?

100x10-6 * B / 1x106 + B/1x109 > 10x109 / 1x109
1x10-12B + 1x10-9B > 10
B > 9.99x109

For scans of larger than 9.9 GB, cheaper to scan

entire 10 GB table than to use clustered index

Rest of Lecture

• Details of access methods
• Heap files (already seen)
• Hash indexes
• Trees (B+/R)

Access Method Costs
Heap File Hash File B+Tree

Insert O(1)
Delete O(P)
Scan O(P)

sequential
Lookup O(P)

n : number of tuples
P : number of pages in file
B : branching factor of B-Tree
R : number of pages in scanned range

R1 R2 R3 R4 …Heap File

Sequentially stored pages, no
seeks between records or pages

P1 P2 Pn

Hash Indexing Idea

• Store a hash table with pointers to records in
heap file

• Hash table keyed on a particular attribute
– Composite keys also possible

• Supports O(1) equality lookup of records
– E.g., employees named “sam”

Hash Index
On Disk Hash Table

n buckets, on n
disk pages

Disk page 1
…

Disk Page n

H(f1)(‘sam’, 10k, …)
(‘mike’, 20k, …)

Issues
How big to make table?
If we get it wrong, either
 waste space, or
 end up with long overflow chains, or
 have to rehash

e.g., H(x) = x mod n

Extensible Hashing

• Create a family of hash tables parameterized by k
 Hk(x) = H(x) mod 2k

• Start with k = 1 (2 hash buckets)
• Use a directory structure to keep track of which

bucket (page) each hash value maps to
• When a bucket overflows, increment k (if

needed), create a new bucket, rehash keys in
overflowing bucket, and update directory

Example

Hk(x) Page
0 0
1 1

Directory
k=1 Hash Table

Page Number Page Contents

0
1

Insert records with keys 0, 0, 2, 3, 2
Hk(x) = x mod 2^k

Example

Hk(x) Page
0 0
1 1

Directory
k=1 Hash Table

Page Number Page Contents

0
1

Insert records with keys 0, 0, 2, 3, 2
Hk(x) = x mod 2^k

0 mod 2 = 0
0

Example

Hk(x) Page
0 0
1 1

Directory
k=1 Hash Table

Page Number Page Contents

0 0 0
1

Insert records with keys 0, 0, 2, 3, 2
Hk(x) = x mod 2^k

0 mod 2 = 0

Example

Hk(x) Page
0 0
1 1

Directory
k=1 Hash Table

Page Number Page Contents

0 0 0 2
1

Insert records with keys 0, 0, 2, 3, 2
Hk(x) = x mod 2^k

2 mod 2 = 0

Example

Hk(x) Page
0 0
1 1

Directory
k=1 Hash Table

Page Number Page Contents

0 0 0 2
1 3

Insert records with keys 0, 0, 2, 3, 2
Hk(x) = x mod 2^k

3 mod 2 = 1

Example

Hk(x) Page
0 0
1 1

Directory
k=1 Hash Table

Page Number Page Contents

0 0 0 2
1 3

Insert records with keys 0, 0, 2, 3, 2
Hk(x) = x mod 2^k

2 mod 2 = 0
- FULL!

Example

Hk(x) Page
0 0
1 1
2
3

Directory
k=1 2 Hash Table

Page Number Page Contents

0 0 0 2
1 3

Insert records with keys 0, 0, 2, 3, 2
Hk(x) = x mod 2^k

Example

Hk(x) Page
0 0
1 1
2 2
3

Directory
k=1 2 Hash Table

Page Number Page Contents

0 0 0 2
1 3
2

Insert records with keys 0, 0, 2, 3, 2
Hk(x) = x mod 2^k

Allocate new page!

Example

Hk(x) Page
0 0
1 1
2 2
3 1

Directory
k=1 2 Hash Table

Page Number Page Contents

0 0 0 2
1 3
2

Insert records with keys 0, 0, 2, 3, 2
Hk(x) = x mod 2^k

Only allocate 1 new page!

Rehash

Example

Hk(x) Page
0 0
1 1
2 2
3 1

Directory
k=1 2 Hash Table

Page Number Page Contents

0 0 0
1 3
2 2

Insert records with keys 0, 0, 2, 3, 2
Hk(x) = x mod 2^k

2 mod 4 = 2

Example

Hk(x) Page
0 0
1 1
2 2
3 1

Directory
k=1 2 Hash Table

Page Number Page Contents

0 0 0
1 3
2 2 2

Insert records with keys 0, 0, 2, 3, 2
Hk(x) = x mod 2^k

2 mod 4 = 2

Extra bookkeeping
needed to keep track of
fact that pages 0/2 have
split and page 1 hasn’t

Access Method Costs
Heap File Hash File B+Tree

Insert O(1) O(1)
Delete O(P) O(1)
R-Scan O(P)

sequential
- / O(P)

Lookup O(P) O(1)

n : number of tuples
P : number of pages in file
B : branching factor of B-Tree
R : number of pages in range

B+Trees

ptr val11 ptr val12 ptr val13 …

ptr val21 ptr val22 ptr val23 …

ptr valn1 ptr valn2 ptr valn3 …

RIDn RIDn+1 RIDn+2 ptr RIDn+3 RIDn+4 RIDn+5 ptr

<val11

>val21, <val22

<valn1

Leaf nodes; records in Attr A order, w/ link pointers

Root node

Inner nodes

Index on Attr A

RID: Record ID à a
reference (pointer) to
a record in heap file

B+Trees

ptr val11 ptr val12 ptr val13 …

ptr val21 ptr val22 ptr val23 …

ptr valn1 ptr valn2 ptr valn3 …

RIDn RIDn+1 RIDn+2 ptr RIDn+3 RIDn+4 RIDn+5 ptr

<val11

>val21, <val22

<valn1

Root node

Inner nodes

Leaf nodes; records in Attr A order, w/ link pointers

RIDn RIDn+1 RIDn+2 ptr RIDn+3 RIDn+4 RIDn+5 ptr

<valn1

B+Trees

Leaf nodes; records in Attr A order, w/ link pointers

Properties of B+Trees
• Branching factor = B
• LogB(tuples) levels
• Logarithmic insert/delete/lookup performance
• Support for range scans

• Link pointers
• No data in internal pages
• Balanced (see text “rotation”) algorithms to rebalance on

insert/delete
• Fill factor: All nodes except root kept at least 50% full

(merge when falls below)
• Clustered / unclustered

Indexes Recap

Heap File B+Tree Hash File
Insert O(1) O(logB n) O(1)
Delete O(P) O(logB n) O(1)
R-Scan O(P) O(logB n + R) -- / O(P)
Lookup O(P) O(logB n) O(1)

n : number of tuples
P : number of pages in file
B : branching factor of B-Tree
R : number of pages in range

https://clicker.mit.edu/6.5830/
Study Break

• What indexes would you create for the following queries
(assuming each query is the only query the database runs
and emp is really really large)

SELECT MAX(sal) FROM emp
SELECT sal FROM emp WHERE id = 1
SELECT name FROM emp
 WHERE sal > 100k
SELECT name FROM emp
 WHERE sal > 100k AND dept = 2

https://clicker.mit.edu/6.5830/
Study Break

• What indexes would you create for the following
queries (assuming each query is the only query the
database runs and emp is really really large)

SELECT MAX(sal) FROM emp
SELECT sal FROM emp WHERE id = 1
SELECT name FROM emp WHERE sal > 100k
SELECT name FROM emp WHERE sal > 100k AND dept = 2

(A) BTree, Btree, None, Hash
(B) BTree, Hash, BTree, none
(C) None, Hash, BTree, BTree
(D) BTree, Hash, BTree, BTree

Study Break

• What indexes would you create for the following
queries (assuming each query is the only query the
database runs)

SELECT MAX(sal) FROM emp
 B+Tree on emp.sal
SELECT sal FROM emp WHERE id = 1
 Hash index on emp.id
SELECT name FROM emp WHERE sal > 100k
 B+Tree on emp.sal (maybe)
SELECT name FROM emp WHERE sal > 100k AND dept = 2
 B+tree on emp.sal (maybe), Hash on dept.dno (maybe)

B+Trees are Inappropriate For Multi-
dimensional Data

• Consider points of the form (x,y) that I want to
index

• Suppose I store tuples with key (x,y) in a
B+Tree

• Problem: can’t look up y’s in a particular range
without also reading x’s

• Two multidimension indexes: R-Tree &
QuadTree

Example Index with Key = X, Y
X Y

1 2

1 3

1 5

3 12

4 3

4 9

4 11

4 15

5 1

7 1

9 4

9 6

9 7

11 2

Index sorts data on X, then Y

Supports efficient range lookups on X
Allows further filtering on Y, but may be
inefficient

Doesn’t support lookups on Y

Example
of the Problem

QUERY
For Y

In Some
Range

Y

X
X=1 X= 2 X= 3 X= 4 X= 5

Y=1

Y=2

Y=3

Y=4

Y=5

Query:
1 ≤ X ≤ 5, 4 < Y< 5B+Tree on X,YHave to scan every

X value to look for
matching Ys!

R-Trees / Spatial Indexes

x

y

R-Trees / Spatial Indexes

x

y

R-Trees / Spatial Indexes

x

y

Q

Allows lookups on
any sized region of X
or Y

Heap File

Quad-Tree

x

y

Quad-Tree

x

y

Quad-Tree

x

y

Quad-Tree
Intermediate
node – points
to 4 child
nodes

Leaf pages
– 1
pointer

Heap File

Study Break

• What indexes would you create for the following
queries (assuming each query is the only query the
database runs)

SELECT MAX(sal) FROM emp
 B+Tree on emp.sal
SELECT sal FROM emp WHERE id = 1
 Hash index on emp.id
SELECT name FROM emp WHERE sal > 100k
 B+Tree on emp.sal (maybe)
SELECT name FROM emp WHERE sal > 100k AND dept = 2
 B+tree on emp.sal (maybe), Hash on dept.dno (maybe)

Typical Database Setup

Transactional database
Lots of writes/updates
Reads of individual records

Analytics / Reporting Database
“Warehouse”

Lots of reads of many records
Bulk updates

Typical query touches a few columns

“Extract, Transform, Load”

