6.5830 Lecture 8

Query Optimization October 2, 2023

Join Algo Summary

Algo	I/O cost	CPU cost	In Mem?
Nested loops	$\|R\|+\|S\|$	$\mathrm{O}(\{\mathrm{R}\} \times\{\mathrm{S}\}$)	R in mem
Nested loops	$\{S\}\|R\|+\|S\|$	$\mathrm{O}(\{\mathrm{R}\} \times\{\mathrm{S}\})$	No
Index nested loops (R index)	$\|S\|+\{S\} c \quad(c<5)$	$\mathrm{O}(\{\mathrm{S}\} \log \{\mathrm{R}\})$	No
Block nested loops	$\|S\|+B\|R\| \quad(B=\|S\| / M)$	$\mathrm{O}(\{\mathrm{R}\} \times\{\mathrm{S}\})$	No
Sort-merge	$\|R\|+\|S\|$	$\mathrm{O}(\{\mathrm{S}\} \log \{\mathrm{S}\})$	Both
Hash (Hash R)	$\|R\|+\|S\|$	$\mathrm{O}(\{\mathrm{S}\}+\{\mathrm{R}\})$	R in mem
Blocked hash (Hash S)	$\|S\|+B\|R\|(B=\|S\| / M)$	$\mathrm{O}(\{\mathrm{S}\}+\mathrm{B}\{\mathrm{R}\})\left({ }^{*}\right)$	No
External Sort-merge	$3(\|R\|+\|S\|)$	$\mathrm{O}(\mathrm{P} \times\{\mathrm{S}\} / \mathrm{P} \log \{\mathrm{S}\} / \mathrm{P})$	No
Simple hash (not covered '23)	$P(\|R\|+\|S\|)(P=\|S\| / M)$	$O(\{R\}+\{S\})$	No
Grace hash	$3(\|R\|+\|S\|)$	$\mathrm{O}(\{\mathrm{R}\}+\{\mathrm{S}\})$	No

Grace hash is generally a safe bet, unless memory is close to size of tables, in which case simple can be preferable

Extra cost of sorting makes sort merge unattractive unless there is a way to access tables in sorted order (e.g., a clustered index), or a need to output data in sorted order (e.g., for a subsequent ORDER BY)

Postgres Demo

- Try running joins with hash vs merge join

Database Internals Outline

Query Optimization Objective

- Find the query plan of minimum cost
- Many possible cost functions, as we've discussed
- Requires a way to:
- Evaluate cost of a plan
- Enumerate (iterate through) plan options

Cost Estimation

- Cost Plan $=\Sigma$ (Cost Plan Operators)
- Cost Plan Operator \propto Size of Operator Input
- Determining Size of Operator Input
- For base tables, equal to size on disk
- Tables with indexes may support predicate push down
- For other operators, equal to "selectivity" x size of children
- Selectivity is fraction of input size that the operator emits
- Join selectivity defined relative to the size of the cross product

Exannole (Lect

SELECT * FROM emp, dept, kids	
WHERE sal > 10k	100 tuples/page
AND emp.dno $=$ dept.dno	10 pages RAM
AND emp.eid $=$ kids.eid	$10 \mathrm{~KB} /$ page

$\xrightarrow{ }$ Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes

Selinger Statistics

4. Evaluate cost of plan operations
5. Find best overall plan

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - \# pages R occupies
ICARD(I) - \# keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes
Modern databases use much more sophisticated stats - will look at Postgres and learn about some research techniques in 2 lectures

Steps:

1. Estimate sizes of relations
2.2 Estimate selectivities
2. Compute intermediate sizes
3. Evaluate cost of plan operations
4. Find best overall plan

Predicate types

1. $\mathrm{col}=\mathrm{val}$

Selinger Selectivities

F(pred) $=$ Selectivity of predicate $=$ Fraction of records that a predicate does not filter

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - \# pages R occupies
ICARD(I) - \# keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes
Clicker (http://clicker.mit.edu/6.5830)
Which is the best estimate for the selectivity of $\mathrm{col}=\mathrm{val}$?
A. $1 / \operatorname{TCARD}(\mathrm{R})$
B. ICARD(I)/NCARD(I)
C. 1/ICARD(I)
D. (max key - val) / (ICARD(I))

Steps:

1. Estimate sizes of relations
2.2 Estimate selectivities
2. Compute intermediate sizes
3. Evaluate cost of plan operations
4. Find best overall plan

Selinger Selectivities

F(pred) $=$ Selectivity of predicate $=$ Fraction of records that a predicate does not filter

Predicate types

1. $\mathrm{col}=\mathrm{val}$
$\mathrm{F}=1 / \mathrm{ICARD}() \quad$ (if index available)
$F=1 / 10$ otherwise

Modern DBs use fancier stats!

 records in RNCARD(R) - "relation cardinality" - number of
TCARD(R) - \# pages R occupies
ICARD(I) - \# keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes
2. $\mathrm{col}>\mathrm{val}$
(max key - value) / (max key - min key) (if index available)
1/3 otherwise
3. coll = col2

1/MAX(ICARD(col1), ICARD(col2)) (if index available)
1/10 otherwise
Assumes key-foreign key join Note a better estimate is $1 /$ ICARD(PK table)

Steps:

1. Estimate sizes of relations
2. . Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

- P1 and P2

Complex Predicates

$\mathrm{F}($ pred $)=$ Selectivity of predicate $=$ Fraction of records that a predicate does not filter

$$
F(P 1) \times F(P 2)
$$

- P1 or P2
$1-P($ neither predicate is satisfied $)=$
$1-(1-F(P 1)) \times(1-F(P 2))$

Note uniformity assumption

Steps:

1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes

Intermediate Sizes

4. Evaluate cost of plan operations
5. Find best overall plan

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - \# pages R occupies
ICARD(I) - \# keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

$$
\begin{aligned}
& N C A R D_{d} \times N C A R D_{e} \times F_{1} \times F_{2}= \\
& 100 \times 10000 \times 0.1 \times 0.01= \\
& 1000
\end{aligned}
$$

NCARD $_{\mathrm{d}}=100 \quad$ NCARD $_{\mathrm{e}}=10000$

Steps:

1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes

4 Evaluate cost of plan operations
5. Find best overall plan

$$
\begin{aligned}
& \text { Cost = pages read + } \\
& \text { weight x (records evaluated) }
\end{aligned}
$$

Cost of Base Table

Operations

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - \# pages R occupies
ICARD(I) - \# keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes
W: weight of CPU operations
Heap File
lookup
Equality predicate with unique index: $1+1+W$
B+Tree Predicate
lookup evaluation
Clustered index, range w/ selectivity F: Fx (NINDX + TCARD) + W x (tuples read)
One l/O per page
Unclustered index, range w/ selectivity F: F x (NINDX + NCARD) + W x (tuples read) One I/O per record

Seq (segment) scan: TCARD + W x (NCARD)

Steps:

1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes

4 Evaluate cost of plan operations
5. Find best overall plan

NestedLoops(A,B,pred)

Cost of Joins

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - \# pages R occupies
ICARD(I) - \# keys (distinct values) in index I
W: weight of CPU operations

$\operatorname{Cost}(A)+N C A R D(A) \times \operatorname{Cost}(B)$
 Outer Plan
 Inner Plan

- Selinger only considers "left deep" plans, i.e., B is always a base table $\mathrm{T}_{\text {right }}$
- In an index on $\mathrm{T}_{\text {right }} \operatorname{Cost}(\mathrm{B})=1+1+\mathrm{W}$
- If no index, $\operatorname{Cost}(B)=\operatorname{TCARD}\left(T_{\text {right }}\right)+W x \operatorname{NCARD}\left(T_{\text {right }}\right)$
- $\operatorname{Cost}(A)$ is just cost of outer subtree

Steps:

1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes

Cost of Joins

4 Evaluate cost of plan operations
5. Find best overall plan

Merge(A,B,pred)

$\operatorname{Cost}(\mathrm{A})+\operatorname{Cost}(\mathrm{B})+$ sort cost

Varies depending on whether sort is in memory or on disk, and whether one or both tables are already sorted

If either table is a base table, cost is just the sequential scan cost

1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes

Enumerating Plans

4. Evaluate cost of plan operations
5. Find best overall plan

- Selinger combines several heuristics with a search over join orders
- Heuristics
- Push down selections
- Don't consider cross products
- Only "left deep" plans

- Right side of all joins is base relation
- Still have to order joins!

Join ordering

- Suppose I have 3 tables, $A \bowtie B \bowtie C$
- Predicates between all 3 (no cross products)
- How many orderings?

ABC	A(BC)	$(\mathrm{AB}) \mathrm{C}$
ACB	$\mathrm{A}(\mathrm{CB})$	$(\mathrm{AC}) \mathrm{B}$
BAC	$\mathrm{B}(\mathrm{AC})$	$(\mathrm{BA}) \mathrm{C}$
BCA	$\mathrm{B}(\mathrm{CA})$	$(\mathrm{BC}) \mathrm{A}$
CAB	$\mathrm{C}(\mathrm{AB})$	$(\mathrm{CA}) \mathrm{B}$
CBA	$\mathrm{C}(\mathrm{BA})$	$(\mathrm{CB}) \mathrm{A}$
$\mathrm{n}!$		

VS

This plan is not

left deep!
Left deep plans are all of the form (...(($(\mathrm{AB}) \mathrm{C}) \mathrm{D}) \mathrm{E}) . .$.
n ! left deep plans
$10!=3.6 \mathrm{M}$
Can we do better?

Dynamic Programming Algorithm

- Idea: compute the best way to join each subplan, from smallest to largest
- Don't need to reconsider subplans in larger plans
- For example, if the best way to join $A B C$ is (AC)B, that will always be the best way to join $A B C$, whenever* these three relations occur as a part of a subplan.
* Except when considering interesting orders

Posteres exannele

explain select * from emp join kids using (eno);

Hash Join (cost=34730.02..132722.07 rows=3000001 width=35)
Hash Cond: (kids.eno = emp.eno)
-> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
-> Hash (cost=16370.01..16370.01 rows=1000001 width=21)
-> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)
explain select * from dept join emp using(dno) join kids using (eno);

Hash Join (cost=35000.04..140870.43 rows=3000001 width=39)
Hash Cond: (emp.dno = dept.dno)
-> Hash Join (cost=34730.02..132722.07 rows=3000001 width=35) Hash Cond: (kids.eno = emp.eno)
-> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
-> Hash (cost=16370.01..16370.01 rows=1000001 width=21)
-> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)
-> Hash (cost=145.01..145.01 rows=10001 width=8)
-> Seq Scan on dept (cost=0.00..145.01 rows=10001 width=8)

Selinger Algorithm

$R<$ set of relations to join
For i in $\{1 . . .|\mathrm{R}|\}$:
for S in \{all length i subsets of $R\}$:
optcost $_{s}=\infty$
optjoin $_{\mathrm{S}}=\varnothing$
for a in S : //a is a relation

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{sa}}= \text { optcost }_{\mathrm{s}-\mathrm{a}}+ \\
& \text { min. cost to join (S-a) to } \mathrm{a}+ \\
& \text { min. access cost for a previous step! } \\
&{\text { if } \mathrm{c}_{\mathrm{sa}}}<\text { optcost }_{\mathrm{s}} \text { : } \\
& \text { optcost }_{\mathrm{s}}=\mathrm{c}_{\mathrm{sa}} \\
& \text { optjoin }_{\mathrm{s}}=\text { optjoin(S-a) joined optimally w/a }
\end{aligned}
$$

Example

4 Relations: ABCD

Optjoin:
A = best way to access A (e.g., sequential scan, or predicate pushdown into index...)

$B="$	$"$	$"$	$" B$
$C="$	$"$	$"$	$" C$
$D="$	$"$	$"$	$" D$

$\{A, B\}=A B$ or $B A$
$\{A, C\}=A C$ or $C A$
$\{B, C\}=B C$ or $C B$
\{A,D\}
$\{B, D\}$
$\{C, D\}$

Dynamic Programming Table

Example (con’t)

Optjoin
$\{A, B, C\}=$

$\{A, C, D\}=\ldots$
$\{A, B, D\}=\ldots$
$\{B, C, D\}=\ldots$
$\{A, B, C, D\}=$ remove A : compare $A(\{B, C, D\})$ to $(\{B, C, D\}) A$ remove B : compare $B(\{A, C, D\})$ to $(\{A, C, D\}) B$ remove C: compare $C(\{A, B, D\})$ to $(\{A, B, D\}) C$ remove D : compare $D(\{A, C, C\})$ to $(\{A, B, C\}) D$

Complexity

- Have to enumerate all sets of size 1 ...n

$$
\binom{n}{1}+\binom{n}{2} \ldots+\binom{n}{n}
$$

- Number of subsets of set of size $\mathrm{n}=$
|power set of n | =
2^{n} (here, n is number of relations)

Equivalent to all binary strings of length N , where a 1 in the ith position indicates that relation i is included:

$$
\text { 001, 010, 100, ... , 011, } 111
$$

Complexity (cont.)

2^{n} Subsets

How much work per subset? Have to iterate through each element of each subset, so this at most n
$\mathrm{n} 2^{\mathrm{n}}$ complexity (vs $\mathrm{n}!$)
$\mathrm{n}=12 \boldsymbol{\rightarrow} \boldsymbol{4 9 K}$ vs 479 M

Interesting Orders

UETV IDTHERESTLUG

- Some query plans produce data in sorted order E.g scan over a primary index, merge-join
- Called an interesting order
- Next operator may use this order - E.g. can be another merge-join
- For each subset of relations, compute multiple optimal plans, one for each interesting order
- Increases complexity by factor $k+1$, where $k=n u m b e r$ of interesting orders

Summary

- Selinger Optimizer is the foundation of modern cost-based optimizers
- Simple statistics
- Several heuristics, e.g., left-deep
- Dynamic programming algo for join ordering
- Easy to extend, e.g., with:
- More sophisticated statistics
- Fewer heuristics

