
6.5830 Lecture 8

Query Optimization
October 2, 2023

Join Algo Summary

Grace hash is generally a safe bet, unless memory is close to size of tables, in which
case simple can be preferable

Extra cost of sorting makes sort merge unattractive unless there is a way to access
tables in sorted order (e.g., a clustered index), or a need to output data in sorted order
(e.g., for a subsequent ORDER BY)

Algo I/O cost CPU cost In Mem?

Nested loops |R|+|S| O({R}x{S}) R in mem

Nested loops {S}|R| + |S| O({R}x{S}) No

Index nested loops (R index) |S| + {S}c (c <5) O({S}log{R}) No

Block nested loops |S| + B|R| (B=|S|/M) O({R}x{S}) No

Sort-merge |R|+|S| O({S}log{S}) Both

Hash (Hash R) |R|+|S| O({S} + {R}) R in mem

Blocked hash (Hash S) |S| + B|R| (B=|S|/M) O({S} + B{R}) (*) No

External Sort-merge 3(|R| + |S|) O(P x {S}/P log {S}/P) No

Simple hash (not covered ‘23) P(|R|+|S|) (P=|S|/M) O({R} + {S}) No

Grace hash 3(|R| + |S|) O({R} + {S}) No

Postgres Demo

• Try running joins with hash vs merge join

Database Internals Outline
Admission Control

Connection Management

Query System

Parser

Rewriter

Planner

Executor

Optimizer

Access
Methods

Buffer
Manager

Lock
Manager

Log
Manager

This
Lecture

This lecture!!!

Two lectures: cardinality
estimation

Query Optimization Objective

• Find the query plan of minimum cost
– Many possible cost functions, as we’ve discussed

• Requires a way to:
– Evaluate cost of a plan
– Enumerate (iterate through) plan options

Cost Estimation

• Cost Plan = ∑(Cost Plan Operators)
• Cost Plan Operator ∝ Size of Operator Input

• Determining Size of Operator Input
– For base tables, equal to size on disk

• Tables with indexes may support predicate push down

– For other operators, equal to “selectivity” x size of children
• Selectivity is fraction of input size that the operator emits
• Join selectivity defined relative to the size of the cross product

Example (Lec 5)

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k

100 tuples/page
10 pages RAM
10 KB/page

|dept| = 100 records = 1 page = 10 KB
|emp| = 10K = 100 pages = 1 MB
|kids| = 30K = 300 pages = 3 MB

100

10K (cardinality)

0.1 (selectivity)

1000

1000 30000

3000

SELECT * FROM emp, dept, kids
WHERE sal > 10k
AND emp.dno = dept.dno
AND emp.eid = kids.eid

Steps:
For each plan alternative:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations

5. Select best plan
Index vs scan?

Join algo?

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦
!"""

!""×!"""
 = 0.01

Kids is foreign key;
Each kid joins w/ 3
emps

Join Ordering? Why not kids / emp first?

Selinger Statistics

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

Modern databases use much more sophisticated stats – will look at
Postgres and learn about some research techniques in 2 lectures

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

Selinger Selectivities

NCARD(R) - "relation cardinality" - number of
records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

Predicate types

1. col = val

F(pred) = Selectivity of predicate = Fraction of
records that a predicate does not filter

Clicker (http://clicker.mit.edu/6.5830)
Which is the best estimate for the selectivity of col = val?
A. 1/TCARD(R)
B. ICARD(I)/NCARD(I)
C. 1/ICARD(I)
D. (max key – val) / (ICARD(I))

http://clicker.mit.edu/6.5830

Selinger Selectivities

NCARD(R) - "relation cardinality" - number of
records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

Predicate types

1. col = val
F = 1/ICARD() (if index available)
F = 1/10 otherwise

2. col > val
(max key - value) / (max key - min key) (if index available)
1/3 otherwise

3. col1 = col2
1/MAX(ICARD(col1), ICARD(col2)) (if index available)
1/10 otherwise

F(pred) = Selectivity of predicate = Fraction of
records that a predicate does not filter

Modern DBs use fancier stats!

Assumes key-foreign key join
Note a better estimate is 1/ICARD(PK table)

Complex Predicates

• P1 and P2
 F(P1) x F(P2)

• P1 or P2
1 – P(neither predicate is satisfied) =
1 – (1-F(P1)) x (1-F(P2))

Note uniformity assumption

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan F(pred) = Selectivity of predicate = Fraction of

records that a predicate does not filter

Intermediate Sizes
Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

⨝ eno=eno

⨝ dno=dno

dept emp

kids

𝛔sal>10k100

10000

1000

1000 30000

3000

NCARD(R) - "relation cardinality" - number of
records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

NCARDd=100 NCARDe=10000

F1 = 0.1

F2 = 0.01

?
𝑁𝐶𝐴𝑅𝐷$×𝑁𝐶𝐴𝑅𝐷%×𝐹!×𝐹& =
100×10000×0.1×0.01 =
1000

Cost of Base Table
Operations

Cost = pages read +
weight x (records evaluated)

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan NCARD(R) - "relation cardinality" - number of

records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes
W: weight of CPU operations

Equality predicate with unique index: 1 + 1 + W
B+Tree
lookup

Heap File
lookup

Predicate
evaluation

Clustered index, range w/ selectivity F: F x (NINDX + TCARD) + W x (tuples read)

Unclustered index, range w/ selectivity F :

Seq (segment) scan: TCARD + W x (NCARD)

One I/O per record

One I/O per page

F x (NINDX + NCARD) + W x (tuples read)

Cost of Joins

NestedLoops(A,B,pred)
 Cost(A) + NCARD(A) x Cost(B)

• Selinger only considers “left deep” plans, i.e., B is always a base
table Tright

• In an index on Tright, Cost(B) = 1 + 1 + W
• If no index, Cost(B) = TCARD(Tright) + W x NCARD(Tright)
• Cost(A) is just cost of outer subtree

Outer Plan Inner Plan

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

NCARD(R) - "relation cardinality" - number of
records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
W: weight of CPU operations

⨝
⨝

A
C

BC
⨝

⨝
A

B

“right deep” “left deep”

⨝
⨝

A B

“bushy”

⨝
C D

Cost of Joins

Merge(A,B,pred)
 Cost(A) + Cost(B) + sort cost

If either table is a base table, cost is just the
sequential scan cost

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

Varies depending on whether sort is in
memory or on disk, and whether one or
both tables are already sorted

Enumerating Plans

• Selinger combines several heuristics with a
search over join orders

• Heuristics
– Push down selections
– Don’t consider cross products
– Only “left deep” plans
• Right side of all joins is base relation

• Still have to order joins!

Steps:
1. Estimate sizes of relations
2. Estimate selectivities
3. Compute intermediate sizes
4. Evaluate cost of plan operations
5. Find best overall plan

⨝ eno=eno

⨝ dno=dno

dept emp

kids
𝛔sal>10k

Predicate
push down

Join ordering

• Suppose I have 3 tables, A ⨝ B ⨝ C
– Predicates between all 3 (no cross products)

• How many orderings?

ABC
ACB
BAC
BCA
CAB
CBA

A(BC)
A(CB)
B(AC)
B(CA)
C(AB)
C(BA)

(AB)C
(AC)B
(BA)C
(BC)A
(CA)B
(CB)A

⨝
⨝

A
C

BC
⨝

⨝
A

B

vs

This plan is not
left deep!

Left deep plans are all of
the form (…(((AB)C)D)E)…)

n! left deep plans
10! = 3.6 M
15! = 1.3 T

Can we do
better?n!

Dynamic Programming Algorithm

• Idea: compute the best way to join each sub-
plan, from smallest to largest
– Don’t need to reconsider subplans in larger plans

• For example, if the best way to join ABC is
(AC)B, that will always be the best way to join
ABC, whenever* these three relations occur as
a part of a subplan.

* Except when considering interesting orders

Postgres example
explain select * from emp join kids using (eno);

 Hash Join (cost=34730.02..132722.07 rows=3000001 width=35)
 Hash Cond: (kids.eno = emp.eno)
 -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
 -> Hash (cost=16370.01..16370.01 rows=1000001 width=21)
 -> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)

explain select * from dept join emp using(dno) join kids using (eno);

 Hash Join (cost=35000.04..140870.43 rows=3000001 width=39)
 Hash Cond: (emp.dno = dept.dno)
 -> Hash Join (cost=34730.02..132722.07 rows=3000001 width=35)
 Hash Cond: (kids.eno = emp.eno)
 -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
 -> Hash (cost=16370.01..16370.01 rows=1000001 width=21)
 -> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)
 -> Hash (cost=145.01..145.01 rows=10001 width=8)
 -> Seq Scan on dept (cost=0.00..145.01 rows=10001 width=8)

Identical
subplans

Selinger Algorithm
R ßset of relations to join
For i in {1...|R|}:
 for S in {all length i subsets of R}:
 optcosts = ∞
 optjoinS = ø
 for a in S: //a is a relation
 csa = optcosts-a +
 min. cost to join (S-a) to a +
 min. access cost for a
 if csa < optcosts :

 optcosts = csa

 optjoins = optjoin(S-a) joined optimally w/ a

Cached in previous step!

Example
4 Relations: ABCD

Optjoin:
A = best way to access A
 (e.g., sequential scan,
 or predicate pushdown into index...)
B = " " " " B
C = " " " " C
D = " " " " D

{A,B} = AB or BA
{A,C} = AC or CA
{B,C} = BC or CB
{A,D}
{B,D}
{C,D}

Dynamic Programming Table

Relations Best Plan Cost

A Index Scan 5

B Seq Scan 15

…

{A,B} BA 75

{A,C} AC 12

{B,C} CB 22

Example (con’t)
Optjoin
{A,B,C} = remove A: compare A({B,C}) to ({B,C})A
 remove B: compare ({A,C})B to B({A,C})
 remove C: compare C({A,B}) to ({A,B})C
{A,C,D} = …
{A,B,D} = …
{B,C,D} = …
…

{A,B,C,D} = remove A: compare A({B,C,D}) to ({B,C,D})A
 remove B: compare B({A,C,D}) to ({A,C,D})B
 remove C: compare C({A,B,D}) to ({A,B,D})C
 remove D: compare D({A,C,C}) to ({A,B,C})D

Already computed!

Relations Best Plan Cost

A Index Scan 5

B Seq Scan 15

…

{A,B} BA 75

{A,C} AC 12

{B,C} CB 22

..

{A,B,C} (CB)A 35

…

{B,C,D} (CB)D 42

..

{A,B,C,D} ((CB)D)A 57

Complexity

• Have to enumerate all sets of size 1…n
𝑛
1
+

𝑛
2
…+

𝑛
𝑛

• Number of subsets of set of size n =
 |power set of n| =
 2n (here, n is number of relations)

Equivalent to all binary strings of length N, where a 1 in
the ith position indicates that relation i is included:
 001, 010, 100, … , 011, 111

Complexity (cont.)

2n Subsets

How much work per subset?
Have to iterate through each element of each
subset, so this at most n

n2n complexity (vs n!)
n=12 è 49K vs 479M

Interesting Orders

• Some query plans produce data in sorted order –
E.g scan over a primary index, merge-join
– Called an interesting order

• Next operator may use this order – E.g. can be
another merge-join

• For each subset of relations, compute multiple
optimal plans, one for each interesting order

• Increases complexity by factor k+1, where
k=number of interesting orders

Summary

• Selinger Optimizer is the foundation of
modern cost-based optimizers
– Simple statistics
– Several heuristics, e.g., left-deep
– Dynamic programming algo for join ordering

• Easy to extend, e.g., with:
– More sophisticated statistics
– Fewer heuristics

