6.5830 Lecture 8

Query Optimization October 2, 2023

Join Algo Summary

Algo	I/O cost	CPU cost	In Mem?
Nested loops	R + S	O({R}x{S})	R in mem
Nested loops	{S} R + S	O({R}x{S})	No
Index nested loops (R index)	S + {S}c (c <5)	O({S}log{R})	No
Block nested loops	S + B R (B= S /M)	O({R}x{S})	No
Sort-merge	R + S	O({S}log{S})	Both
Hash (Hash R)	R + S	O({S} + {R})	R in mem
Blocked hash (Hash S)	S + B R (B= S /M)	O({S} + B{R}) (*)	No
External Sort-merge	3(R + S)	O(P x {S}/P log {S}/P)	No
Simple hash (not covered '23)	P(R + S) (P= S /M)	O({R} + {S})	No
Grace hash	3(R + S)	O({R} + {S})	No

Grace hash is generally a safe bet, unless memory is close to size of tables, in which case simple can be preferable

Extra cost of sorting makes sort merge unattractive unless there is a way to access tables in sorted order (e.g., a clustered index), or a need to output data in sorted order (e.g., for a subsequent ORDER BY)

Postgres Demo

• Try running joins with hash vs merge join

Database Internals Outline

Query Optimization Objective

- Find the query plan of minimum cost

 Many possible cost functions, as we've discussed
- Requires a way to:
 - Evaluate cost of a plan
 - Enumerate (iterate through) plan options

Cost Estimation

- Cost Plan = ∑(Cost Plan Operators)
- Cost Plan Operator ∝ Size of Operator Input

- Determining Size of Operator Input
 - For base tables, equal to size on disk
 - Tables with indexes may support predicate push down
 - For other operators, equal to "selectivity" x size of children
 - **Selectivity** is fraction of input size that the operator emits
 - Join selectivity defined relative to the size of the cross product

Example (Lec 5)

100 tuples/page

10 pages RAM

10 KB/page

SELECT * FROM emp, dept, kids WHERE sal > 10k AND emp.dno = dept.dno AND emp.eid = kids.eid

Kids is foreign key; IdeptI = 100 records = 1 page = 10 KB 3000 Selectivity Each kid joins w/ 3 lempl = 10K = 100 pages = 1 MB1000⋈ eno=eno emps - = 0.01|kids| = 30K = 300 pages = 3 MB100×1000 1000 30000 kids Join Ordering? Why not kids / emp first? Join algo? M dno=dno Steps: 1000 For each plan alternative: 100 σ_{sal>10k} 0.1 (selectivity) 1. Estimate sizes of relations 2. Estimate selectivities 10K (cardinality) 3. Compute intermediate sizes emp dept 4. Evaluate cost of plan operations Index vs scan? Select best plan 5.

- Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Selinger Statistics

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

Modern databases use much more sophisticated stats – will look at Postgres and learn about some research techniques in 2 lectures

- 1. Estimate sizes of relations
- Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Selinger Selectivities

F(pred) = Selectivity of predicate = Fraction of records that a predicate does not filter

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

Clicker (http://clicker.mit.edu/6.5830)

Which is the best estimate for the selectivity of *col = val*?

- A. 1/TCARD(R)
- B. ICARD(I)/NCARD(I)
- C. 1/ICARD(I)
- D. (max key val) / (ICARD(I))

Predicate types

1. col = val

- 1. Estimate sizes of relations
- Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Selinger Selectivities

F(pred) = Selectivity of predicate = Fraction of records that a predicate does not filter

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

Modern DBs use fancier stats!

2. col > val

(max key - value) / (max key - min key) *(if index available)* 1/3 otherwise

3. col1 = col2
1/MAX(ICARD(col1), ICARD(col2)) (*if index available*)
1/10 otherwise Assumes key-foreign key join

Note a better estimate is 1/ICARD(PK table)

Predicate types

1. col = val

F = 1/ICARD() *(if index available)* F = 1/10 otherwise

- 1. Estimate sizes of relations
- Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan
 - P1 and P2

F(P1) x F(P2)

Complex Predicates

F(pred) = Selectivity of predicate = Fraction of records that a predicate does not filter

- P1 or P2
 - 1 P(neither predicate is satisfied) =
 - 1 (1-F(P1)) x (1-F(P2))

Note uniformity assumption

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Intermediate Sizes

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

 $\begin{aligned} & NCARD_d \times NCARD_e \times F_1 \times F_2 = \\ & 100 \times 10000 \times 0.1 \times 0.01 = \\ & 1000 \end{aligned}$

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Cost = pages read + weight x (records evaluated)

Equality predicate with unique index: 1 + 1 + W

B+Tree lookup Predicate evaluation

Clustered index, range w/ selectivity F: F x (NINDX + TCARD) + W x (tuples read) One I/O per page

Unclustered index, range w/ selectivity F : F x (NINDX + NCARD) + W x (tuples read) One I/O per record

Seq (segment) scan: TCARD + W x (NCARD)

Cost of Base Table Operations

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes
W: weight of CPU operations

Heap File lookup

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations

NestedLoops(A,B,pred)

5. Find best overall plan

Cost of Joins

NCARD(R) - "relation cardinality" - number of records in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index I

W: weight of CPU operations

Cost(A) + NCARD(A) x Cost(B)

- Selinger only considers "left deep" plans, i.e., B is always a base table T_{right}
- In an index on T_{right}, Cost(B) = 1 + 1 + W
- <u>If no index</u>, Cost(B) = TCARD(T_{right}) + W x NCARD(T_{right})
- Cost(A) is just cost of outer subtree

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Cost of Joins

Merge(A,B,pred) Cost(A) + Cost(B) + sort cost

Varies depending on whether sort is in memory or on disk, and whether one or both tables are already sorted

If either table is a base table, cost is just the sequential scan cost

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Enumerating Plans

- Selinger combines several heuristics with a search over join orders
- Heuristics
 - Push down selections
 - Don't consider cross products
 - Only "left deep" plans
 - Right side of all joins is base relation
- Still have to order joins!

Join ordering

- Suppose I have 3 tables, A ⋈ B ⋈ C
 Predicates between all 3 (no cross products)
- How many orderings?

A(BC)	(AB)C
A(CB)	(AC)B
B(AC)	(BA)C
B(CA)	(BC)A
C(AB)	(CA)B
C(BA)	(CB)A
	A(BC) A(CB) B(AC) B(CA) C(AB) C(BA)

n!

This plan is not left deep!

Left deep plans are all of the form (...(((AB)C)D)E)...)

n! left deep plans 10! = 3.6 M 15! = 1.3 T

Can we do better?

Dynamic Programming Algorithm

 Idea: compute the best way to join each subplan, from smallest to largest

- Don't need to reconsider subplans in larger plans

 For example, if the best way to join ABC is (AC)B, that will always be the best way to join ABC, whenever^{*} these three relations occur as a part of a subplan.

* Except when considering interesting orders

Postgres example

Identical

subplans

explain select * from emp join kids using (eno);

```
Hash Join (cost=34730.02..132722.07 rows=3000001 width=35)
```

Hash Cond: (kids.eno = emp.eno)

- -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
- -> Hash (cost=16370.01..16370.01 rows=1000001 width=21)
 - -> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)

explain select * from dept join emp using(dno) join kids using (eno);

Hash Join (cost=35000.04..140870.43 rows=3000001 width=39) Hash Cond: (emp.dno = dept.dno)

- -> Hash Join (cost=34730.02..132722.07 rows=3000001 width=35) Hash Cond: (kids.eno = emp.eno)
 - -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
 - -> Hash (cost=16370.01..16370.01 rows=1000001 width=21)

-> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)

-> Hash (cost=145.01..145.01 rows=10001 width=8)

-> Seq Scan on dept (cost=0.00..145.01 rows=10001 width=8)

Selinger Algorithm

```
R \leftarrow set of relations to join
For i in {1...|R|}:
    for S in {all length i subsets of R}:
         optcost_s = \infty
         optjoin_{s} = \phi
         for a in S: //a is a relation
             c_{sa} = optcost_{s-a} +
                                                     Cached in previous step!
                     min. cost to join (S-a) to a +
                     min. access cost for a
              if c_{sa} < optcost<sub>s</sub>:
                  optcost_s = c_{sa}
                  optjoin_s = optjoin(S-a) joined optimally w/ a
```

Example

4 Relations: ABCD

Optjoin:

- A = best way to access A
 - (e.g., sequential scan,
 - or predicate pushdown into index...)

B = "	11	н	" B
C = "		н	" C
D = "	п	н	" D

{A,B} = AB or BA
{A,C} = AC or CA
{B,C} = BC or CB
{A,D}
{B,D}
{C,D}

Dynamic Programming Table

Example (con't)		Relations	Best Plan	Cost			
		А	Index Scan	5			
		В	Seq Scan	15			
Optjoin	Already computed!						
{A,B,C} =	remove A: compare A({B,C}) to ({B,C})A	{A,B}	BA	75			
	remove B: compare ({A,C})B to B({A,C})	{A,C}	AC	12			
	remove C: compare C({A,B}) to ({A,B})C		СВ	22			
{A,C,D} =							
$\{A,B,D\} = \dots$							
$\{B,C,D\} =$							
•••							
{A,B,C,D} =	{A,B,C,D} = remove A: compare A({B,C,D}) to ({B,C,D})A						
	remove B: compare B({A,C,D}) to ({A,C,D})B remove C: compare C({A,B,D}) to ({A,B,D})C						
	remove D: compare D({A,C,C}) to ({A,B,C})D					

Complexity

- Have to enumerate all sets of size 1...n $\binom{n}{1} + \binom{n}{2} \dots + \binom{n}{n}$
- Number of subsets of set of size n =
 |power set of n| =
 - 2ⁿ (here, n is number of relations)

Equivalent to all binary strings of length N, where a 1 in the ith position indicates that relation i is included: 001, 010, 100, ..., 011, 111

Complexity (cont.)

2ⁿ Subsets

How much work per subset?

Have to iterate through each element of each subset, so this at most n

n2ⁿ complexity (vs n!) n=12 \rightarrow 49K vs 479M

Interesting Orders

- Some query plans produce data in sorted order –
 E.g scan over a primary index, merge-join
 Called an *interesting order*
- Next operator may use this order E.g. can be another merge-join
- For each subset of relations, compute multiple optimal plans, one for each interesting order
- Increases complexity by factor k+1, where k=number of interesting orders

Summary

- Selinger Optimizer is the foundation of modern cost-based optimizers
 - Simple statistics
 - Several heuristics, e.g., left-deep
 - Dynamic programming algo for join ordering
- Easy to extend, e.g., with:
 - More sophisticated statistics
 - Fewer heuristics

