6.5830 Lecture 9

Column Stores

10/2/2024

Quiz 1 10/9 PS2 Due 10/7

Welcome to adulthood. You get mad when they rearrange the grocery store now.

Plan for Next Few Lectures

Recap - Join Algorithm

Algo	I/O cost	CPU cost	In Mem?
Nested loops	R + S	O({R}x{S})	R in mem
Nested loops	{S} R + S	O({R}x{S})	No
Index nested loops (R index)	S + {S}c (c <5)	O({S}log{R})	No
Block nested loops	S + B R (B= S /M)	O({R}x{S})	No
Sort-merge	R + S	O({S}log{S})	Both
Hash (Hash R)	R + S	O({S} + {R})	R in mem
Blocked hash (Hash S)	S + B R (B= S /M)	O({S} + B{R}) (*)	No
External Sort-merge	3(R + S)	O(P x {S}/P log {S}/P)	No
Simple hash (not covered)	P(R + S) (P= S /M)	O({R} + {S})	No
Grace hash	3(R + S)	O({R} + {S})	No

Grace hash is generally a safe bet, unless memory is close to size of tables, in which case simple can be preferable

Extra cost of sorting makes sort merge unattractive unless there is a way to access tables in sorted order (e.g., a clustered index), or a need to output data in sorted order (e.g., for a subsequent ORDER BY)

Recap Selinger Optimizer

Steps:

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Selectivity Estimates:

1. col = val

F = 1/ICARD() (if index available) F = 1/10 otherwise

2. col > val

(max key - value) / (max key - min key) (if index available) 1/3 otherwise

3. col1 = col2 1/MAX(ICARD(PK table)) (*if index available*) 1/10 otherwise

Selinger Statistics

NCARD(R) - "relation cardinality" - number of records in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index I

NINDX(I) - pages occupied by index I

Min and max keys in indexes

P1 and P2: F(P1) x F(P2)

P1 or P2

1 - P(neither predicate is satisfied) = 1 - (1-F(P1)) x (1-F(P2))

Note uniformity assumption

http://clicker.mit.edu/6.5830

Selinger Statistics

NCARD(R) - "relation cardinality" - number of records in R TCARD(R) - # pages R occupies ICARD(I) - # keys (distinct values) in index I NINDX(I) - pages occupied by index I Min and max keys in indexes

Clicker (<u>http://clicker.mit.edu/6.5830</u>)

What is the selectivity of F₂

1

0.1

0.01

0.001

Clicker - Intermediate Sizes

http://clicker.mit.edu/6.5830

Steps:

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

What is the intermediate size after the Dep-Emp Join? A) $100 \times (10000 \times 0.1) \times 0.01 = 1000$ B) $10000 \times 0.1 = 1000$ C) $10000 \times 0.1 \times 0.01 = 10$ D) $10000 \times 0.1 \times 100 = 100000$

Intermediate Sizes

Steps:

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes

3000

 $\begin{array}{l} NCARD_d \times NCARD_e \times F_1 \times F_2 = \\ 100 \times 10000 \times 0.1 \times 0.01 = \\ 1000 \end{array}$

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Cost = pages read + weight x (records evaluated)

Cost of Base Table Operations

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes
W: weight of CPU operations

Heap File lookup

B+Tree

lookup

Equality predicate with unique index:

+ 1 + W Predicate evaluation

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Cost = pages read + weight x (records evaluated)

Equality predicate with unique index:

B+Tree

1 + 1 + W e Predicate evaluation

Clustered index, range w/ selectivity F

A: F x TCARD + W x (tuples read)
B: F x (NINDX + NCARD) + W x (tuples read)
C: F x NINDX + W x (tuples read)
D: F x (NINDX + TCARD) + W x (tuples read)

Clicker (http://clicker.mit.edu/6.5830)

Cost of Base Table Operations

NCARD(R) - "relation cardinality" - number of records in R TCARD(R) - # pages R occupies ICARD(I) - # keys (distinct values) in index I NINDX(I) - pages occupied by index I Min and max keys in indexes W: weight of CPU operations

Heap File lookup

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Cost = pages read + weight x (records evaluated)

Cost of Base Table Operations

NCARD(R) - "relation cardinality" - number of records in R
TCARD(R) - # pages R occupies
ICARD(I) - # keys (distinct values) in index I
NINDX(I) - pages occupied by index I
Min and max keys in indexes
W: weight of CPU operations

Heap File lookup

```
Equality predicate with unique index:
```

B+Tree lookup Predicate evaluation

1 + 1 + W

Clustered index, range w/ selectivity F: F x (NINDX + TCARD) + W x (tuples read) One I/O per page

Unclustered index, range w/ selectivity F : F x (NINDX + NCARD) + W x (tuples read) One I/O per record

Seq (segment) scan: TCARD + W x (NCARD)

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations

NestedLoops(A,B,pred)

5. Find best overall plan

Cost of Joins

NCARD(R) - "relation cardinality" - number of records in R

TCARD(R) - # pages R occupies

ICARD(I) - # keys (distinct values) in index I

W: weight of CPU operations

Cost(A) + NCARD(A) x Cost(B)

- Selinger only considers "left deep" plans, i.e., B is always a base table T_{right}
- In an index on T_{right} , Cost(B) = 1 + 1 + W
- <u>If no index</u>, Cost(B) = TCARD(T_{right}) + W x NCARD(T_{right})
- Cost(A) is just cost of outer subtree

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- 5. Find best overall plan

Cost of Joins

Merge(A,B,pred) Cost(A) + Cost(B) + sort cost

Varies depending on whether sort is in memory or on disk, and whether one or both tables are already sorted

If either table is a base table, cost is just the sequential scan cost

- 1. Estimate sizes of relations
- 2. Estimate selectivities
- 3. Compute intermediate sizes
- 4. Evaluate cost of plan operations
- Find best overall plan

Enumerating Plans

- Selinger combines several heuristics with a search over join orders
- Heuristics
 - Push down selections
 - Don't consider cross products
 - Only "left deep" plans
 - Right side of all joins is base relation
- Still have to order joins!

Join ordering

Suppose I have 3 tables, A ⋈ B ⋈ C
 Predicates between all 3 (no cross products)

• How many orderings?

ABC	A(BC)	(AB)C
ACB	A(CB)	(AC)B
BAC	B(AC)	(BA)C
BCA	B(CA)	(BC)A
CAB	C(AB)	(CA)B
CBA	C(BA)	(CB)A

n!

(not even factoring in

choice of join method)

This plan is not left deep!

Left deep plans are all of the form (...(((AB)C)D)E)...)

n! left deep plans 10! = 3.6 M 15! = 1.3 T

Can we do better?

Dynamic Programming Algorithm

 Idea: compute the best way to join each subplan, from smallest to largest

- Don't need to reconsider subplans in larger plans

 For example, if the best way to join ABC is (AC)B, that will always be the best way to join ABC, whenever^{*} these three relations occur as a part of a subplan.

* Except when considering interesting orders

Postgres example

explain select * from emp join kids using (eno);

Hash Join (cost=34730.02..132722.07 rows=3000001 width=35)

Hash Cond: (kids.eno = emp.eno)

- -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
- -> Hash (cost=16370.01..**16370.01** rows=1000001 width=21)
 - -> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)

Default PostgreSQL valueS:

- single sequential page read costing 1.0 units (seq_page_cost)
- Each row processed adds 0.01 (cpu_tuple_cost),
- each non-sequential page read adds 4.0 (random_page_cost).
- ... ///there are many many more constants like this

First number is startup cost (i.e., cost to fetch the first row) Second number is total cost

Postgres example

explain select * from emp join kids using (eno);

Hash Cond: (kids.eno = emp.eno)

- -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
- -> Hash (cost=16370.01..16370.01 rows=1000001 width=21)
 - -> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)

explain select * from dept join emp using(dno) join kids using (eno);

Hash Join (cost=35000.04..140870.43 rows=3000001 width=39)

Hash Cond: (emp.dno = dept.dno)

- -> Hash Join (cost=34730.02..132722.07 rows=3000001 width=35) Hash Cond: (kids.eno = emp.eno)
 - -> Seq Scan on kids (cost=0.00..49099.01 rows=3000001 width=18)
 - -> Hash (cost=16370.01..16370.01 rows=1000001 width=21)
 - -> Seq Scan on emp (cost=0.00..16370.01 rows=1000001 width=21)
- -> Hash (cost=145.01..145.01 rows=10001 width=8)
 - -> Seq Scan on dept (cost=0.00..145.01 rows=10001 width=8)

Identical subplans

Selinger Algorithm

- 1. Find all plans for accessing each base relation
 - Include index scans when available on push-down predicates
- 2. For each relation, save cheapest unordered plan (, and cheapest plan for each "interesting order".) Discard all others.
- 3. Now, try all ways of joining all pairs of 1-table plans saved so far. Save cheapest unordered 2-table plans (and cheapest "interesting ordered" 2-table plans)
- 4. Now try all ways of combining a 2-table plan with a 1-table plan. Save cheapest unordered (and interestingly ordered 3-way plans). You can now throw away the 2-way plans.
- 4. Continue combining *k*-way and 1-way plans until you have a collection of full plan trees
- 5. At top, satisfy GROUP BY and ORDER BY either by using interestingly ordered plan, or by adding a sort node to unordered plan, whichever is cheapest.

don't combine a *k*-way plan with a 1-way plan if there's no predicate between them, unless all predicates have been used up (i.e. postpone Cartesian products)

Selinger Algorithm

Example

4 Relations: ABCD

Optjoin:

A = best way to access A

(e.g., sequential scan,

or predicate pushdown into index...)

B = "	11		" B
C = "		п	" C
D = "	п	н	" D

{A,B} = AB or BA
{A,C} = AC or CA
{B,C} = BC or CB
{A,D}
{B,D}
{C,D}

Dynamic Programming Table

Example (con't)		Relations	Best Plan	Cost
		А	Index Scan	5
		В	Seq Scan	15
Optjoin	Already computed!			
{A,B,C} =	compare ({B,C})A to ({A,C})B to ({A,B})C	{A,B}	BA	75
		{A,C}	AC	12
{A,B,D} =	\rightarrow	{B,C}	СВ	22
{B,C,D} =				
•••				
{A,B,C,D} =	compare ({B,C,D})A to ({A,C,D})B to			
	({A,B,D})C to ({A,B,C})D			

Complexity (cont.)

2ⁿ Subsets

How much work per subset?

Have to iterate through each element of each subset, so this at most n

n2ⁿ complexity (vs n!) n=12 \rightarrow 49K vs 479M

Interesting Orders

- Some query plans produce data in sorted order –
 E.g scan over a primary index, merge-join
 Called an *interesting order*
- Next operator may use this order E.g. can be another merge-join
- For each subset of relations, compute multiple optimal plans, one for each interesting order
- Increases complexity by factor k+1, where k=number of interesting orders

Optimization Recap

- Selinger Optimizer is the foundation of modern cost-based optimizers
 - Simple statistics
 - Several heuristics, e.g., left-deep
 - Dynamic programming algo for join ordering
- Easy to extend, e.g., with:
 - More sophisticated statistics
 - Fewer heuristics

Rest of today: Column Stores

A different way to build a database system

Typical Database Setup

Transactional database

Lots of writes/updates Reads of individual records Analytics / Reporting Database "Warehouse"

Lots of reads of many records Bulk updates

Typical query touches a few columns

PROBLEM

- You are the new Data Scientist at New Market
- New Market is tracking all customer purchases with their membership card or credit card
- They also have data about their customers (estimated income, family status,...)
- Recently, they are trying to improve their image for young mothers
- As a start they want to know the following information for mothers under 30 for 2013:
 - How much do they spend?
 - How much do they spend per state?
 - How does this compare to all customers under 30?
 - What are their favorite products?
 - How much do they spend per year?

Your first project: Design the schema for New Market!

TYPICAL OLTP SCHEMA

STAR VS. SNOWFLAKE SCHEMA

	Snowflake	Star
Normalization/ De-Normalization	Dimension Tables are in Normalized form but Fact Table is still in De-Normalized form	Both Dimension and Fact Tables are in De-Normalized form
Space	Smaller	Bigger (Redundancy)
Query Performance	More Joins \rightarrow slower	Fewer Joins → faster
Ease of Use	Complex Queries	Pretty Simply Queries
When to use	When dimension table is relatively big in size, snowflaking is better as it reduces space.	When dimension table contains less number of rows, we can go for Star schema.

Galaxy / Fact Constellation

Schema

2 DIMENSIONAL CASE

TYPICAL OLAP OPERATIONS

Roll up (drill-up): summarize data

by climbing up hierarchy or by dimension reduction

Drill down (roll down): reverse of roll-up

from higher level summary to lower level summary or detailed data, or introducing new dimensions Slice and dice: project and select Pivot (rotate): reorient the cube, visualization, 3D to series of 2D planes.

Other operations

drill across: involving (across) more than one fact table drill through: through the bottom level of the cube to its back-end relational tables (using SQL)

ROLLUP

How Long Does a Scan Take?

Column Representation Reduces Scan Time

• Idea: Store each column in a separate file

Column Representation

		GM	30.77	1,000	NYSE	1/17/2007
Reads Just 3	3	GM	30.77	10,000	NYSE	1/17/2007
		GM	30.78	12,500	NYSE	1/17/2007
		AAPL	93.24	9,000	NQDS	1/17/2007

Assuming each column is same size, reduces bytes read from disk by factor of 3/5

In reality, databases are often 100's of columns

Linearizing a Table – Row store

C1	C2	С3	C4	C5	C 6
_					
_					

<u>Memory/Disk</u>
<u>(Linear Array)</u>
R1 C1
R1 C2
R1 C3
R1 C4
R1 C5
R1 C6
R2 C1
R2 C2
R2 C3
R2 C4
R2 C5
R2 C6
R3 C1
R3 C4
R3 C6
R3 C0 R4 C1
R4 C2
R4 C3
R4 C4
R4 C5
R4 C6

Linearizing a Table – Column Store

C	1	C2	С3	C4	C5	C 6	

Memory/Disk
(Linear Array)
R1 C1
R3 CI
R4 C1
R5 C1
R6 C1
R1 C2
R2 C2
R3 C2
R4 C2
R5 C2
R6 C2
R1 C3
R2 C3
R3 C3
R4 C3
R5 C3
R6 C3
R1 C4
R2 C4
R3 C4
R4 C4
R5 C4
R6 C4
10 04

Tables Often Super Wide

 Data warehouse at Cambridge Mobile Telematics

Table	#columns	
t1	251	Average query access 4-5 fields
t2	248	
t3	134	Top 2-3 tables involved in nearly every query
t4	107	
t5	87	Using a row-store would impose ~200/4 =
t6	83	50x performance overhead
t7	71	
t8	54	
t9	52	
t10	45	

When Are Columns Right?

- Warehousing (OLAP)
 - Read-mostly; batch update
 - Queries: Scan and aggregate a few columns
- Vs. Transaction Processing (OLTP)
 - Write-intensive, mostly single record ops.
- Column-stores: OLAP optimized
- In practice >10x performance on comparable HW, for many real world analytic applications
 - True even if w/ Flash or main memory!

Different architectures for different workloads

C-Store: Rethinking Database Design from the Ground Up

Query Processing Example

Query Processing Example

Query Processing Example

Why Compress?

- Database size is 2x-5x larger than the volume of data loaded into it
- Database performance is proportional to the amount of data flowing through the system

Column-Oriented Compression

- Query engine processes compressed data
- Transfers load from disk to CPU
- Multiple compression types
 - Run-Length Encoding (RLE), LZ, Delta Value, Block Dictionary Bitmaps, Null Suppression
- System chooses which to apply
- Typically see 50% 90% compression
- NULLs take virtually no space

RLE	Delta	LZ	RLE	RLE
3xGM	30.77	1,000	3xNYSE	4 x 1/17/2007
1XAPPL	30.77	12,500	1XNQDS	1/17/2007
GM	30.78	9,000 12,300	NYSE	1/17/2007
AAPL	93.24	9,000	NQDS	1/17/2007

Columns contain similar data, which makes compression easy

Run Length Encoding

- Replace repeated values with a count and a value
- For single values, use a run length of 1
 - Naively, can increase storage space
 - Can use a shorter bit sequence for 1s, at the cost of more expensive decompression
- E.g., $1110002 \rightarrow 3x1$, 3x0, 1x2
- Works well for mostly-sorted, few-valued columns

Dictionary Encoding

- Many variants; simplest is to replace string values with integers and maintain a dictionary
- I.e., AAPL, AAPL, IBM, MSFT \rightarrow

1,1,2,3 + 1:AAPL, 2:IBM, 3:MSFT

- Works well for few-valued string columns
 - Choice of dictionary not obvious
 - Words? Records?

Lempel Ziv Encoding

- LZ ("Lempel Ziv") Compression
- General purpose lossless data compression
- Builds data dictionary dynamically as it runs
 - Add new bit strings to the dictionary as they are encountered
- Treat entire column as a document

Delta Encoding

- Consecutive values encoding as difference to previous values
- 1.1, 1.2, 1.3 \rightarrow 1.1, +.1, +1
 - After encoding as deltas, bit-pack
 - Works if deltas can be represented in fewer bits than whole values
- Works well for e.g., floats with small variations

Bitmap Encoding

- Encode few valued columns as bitmaps
- MMMFF \rightarrow 11100, 00011
 - If fewer distinct values than bitwidth of field, saves space
 - Bitmaps can be further compressed, e.g., using RLE
- Bitmaps are very good for certain kinds of operations, e.g., filtering

Sorted Data

- Delta and RLE work great on sorted data
- Trick: Secondary sorting

X	Y	Sort on X, then Y	X	Y	Y is not sorted, but if many duplicat
а	2		а	1	
b	2		а	2	
а	1		b	1	
b	1		b	2	of X, wi

es "mostly" sorted

Operating on Compressed Data

Direct Operation Optimizations

- Compressed data used directly for position lookup
 - RLE, Dictionary, Bitmap
- Direct Aggregation and GROUP BY on compressed blocks
 - RLE, Dictionary
- Join runs of compressed blocks
 - RLE, Dictionary
- Min/max directly extracted from sorted data

Compression + Sorting is a Huge Win

- How can we get more sorted data?
- Store duplicate copies of data
 - Use different physical orderings
- Improves ad-hoc query performance
 - Due to ability to directly operate on sorted, compressed data
- Supports fail-over / redundancy

Study Break: Compression

• For each of the following columns, what compression method would you recommend?

(Choose from A. RLE, B. Dictionary, C. Bitmap, D. Delta, E. Bit-packing)

https://clicker.mit.edu/6.5830/

An unsorted column of integers in the range 0-100 Delta/Bit-packing (LZ/dictionary also OK)

A mostly sorted column of arbitrary strings

A mostly sorted column of integers in the range 0-10

A sorted column of floats

Write Performance

Trickle load: Very Fast Inserts

> Write-optimized Column Store (WOS)

Memory: mirrored projections in insertion order (uncompressed)

Queries read from both WOS and ROS

> Read-optimized Column Store (ROS)

Disk: data is sorted and compressed

When to Rewrite ROS Objects?

- Store multiple ROS objects, instead of just one
 - Each of which must be scanned to answer a query
- Tuple mover writes new objects
 - Avoids rewriting whole ROS on merge
- Periodically merge ROS objects to limit number of distinct objects that must be scanned ("Log structured merge tree")

- Performance will degrade as you get many partitions
- Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times

- Performance will degrade as you get many partitions
- Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times

- Performance will degrade as you get many partitions
- Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times

- Performance will degrade as you get many partitions
- Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times

- Performance will degrade as you get many partitions
- Idea: merge some partitions together, but how?
- Log structured merge tree: arrange so partitions merge a logarithmic number of times

Log Structure Merge Tree

Column-Oriented Data In Modern Systems

- C-Store commercialized as Vertica
- Although it wasn't the first column-oriented DB, it led to a proliferation of commercial column-oriented systems
- Now the de-facto way that analytic database systems are built, including Snowflake, Redshift, and others.
- One popular open-source option: Parquet

Efficient Data Loading: Parquet

- Parquet is column-oriented file format that is MUCH more efficient than CSV for storing tabular data
- Vs CSV, Parquet is stored in binary representation
 - Uses less space
 - Doesn't require conversion from strings to internal types
 - Doesn't require parsing or error detection
 - Column-oriented, making access to subsets of columns much faster

Parquet Format

- Data is partitioned sets of rows, called "row groups"
- Within each row group, data from different columns is stored separately

Using header, can efficiently read any subset of columns or rows without scanning whole file (unlike CSV)

Within a row group, data for each column is stored together

Predicate Pushdown w/ Parquet & Pandas

pd.read_parquet(`file.pq', columns=[`Col 1', `Col 2'])

- Only reads col1 and col2 from disk
- For a wide dataset saves a ton of I/O

Performance Measurement

Compare reading CSV to parquet to just columns we need

```
t = time.perf_counter()
df = pd.read_csv("FARS2019NationalCSV/Person.CSV", encoding = "ISO-8859-1")
print(f"csv elapsed = {time.perf_counter() - t:.3} seconds")
t = time.perf_counter()
df = pd.read_parquet("2019.pq")
print(f"parquet elapsed = {time.perf_counter() - t:.3} seconds")
t = time.perf_counter()
df = pd.read_parquet("2019.pq", columns = ['STATE', 'ST_CASE', 'DRINKING', 'PER_TYP'])
print(f"parquet subset elapsed = {time.perf_counter() - t:.3} seconds")
```

47x speedup

```
csv elapsed = 1.18 seconds
parquet elapsed = 0.338 seconds
parquet subset elapsed = 0.025 seconds
```

When to Use Parquet?

- Will always be more efficient than CSV
- Converting from Parquet to CSV takes time, so only makes sense to do so if working repeatedly with a file
- Parquet requires a library to access/read it, whereas many tools can work with CSV
- Because CSV is text, it can have mixed types in columns, or other inconsistencies
 - May be useful sometimes, but also very annoying!
 - Parquet does not support mixed types in a column
Summary

- Column oriented databases are a different way to "linearize" data to disk than the row-oriented representation we have studied
- A good fit for "warehousing" workloads that mostly read many records of a few tables
- C-Store system implements many additional ideas:
 - "Late materialization" execution
 - Column-specific compression and direct execution on compressed data
 - Read/write optimized stores
- Ideas have found their way into many modern systems and libraries, e.g., Parquet