
6.5830 / 6.5831

Quiz 2 Review
November 15, 2023

Logistics

● What: Covers lectures 10 to 18 (inclusive)

● When: Wednesday during lecture (November 20, 2023 at 2:30 pm)

● Where: Lecture classroom (45-230)

● Length: 80 minutes

● How: Quiz will be on paper

● Open book/notes/calculator. No electronic devices with internet access.

● Email staff for conflicts and accommodations (6.5830-staff@mit.edu) or make

a private Piazza post by next Monday 5pm ET at the latest!

2

mailto:6.5830-staff@mit.edu

Topics

● Database layout for analytic databases

● Transactions and locking

● Logging and recovery (ARIES)

● Optimistic concurrency control and snapshot isolation

● Parallel/distributed databases (analytics and transactions)

● Cardinality estimation

● Eventual Consistency

3

Column Store

4

Linearizing a Table –

Column Store

C1 C2 C3 C4 C5 C6

R1 C1
R2 C1
R3 C1
R4 C1
R5 C1
R6 C1
R1 C2
R2 C2
R3 C2
R4 C2
R5 C2
R6 C2
R1 C3
R2 C3
R3 C3
R4 C3
R5 C3
R6 C3
R1 C4
R2 C4
R3 C4
R4 C4
R5 C4
R6 C4

Memory/Disk
(Linear Array)

6 Query Processing Example

● Basic Column Store
● “Early Materialization”

SELECT avg(price)

FROM tickstore

WHERE symbol = ‘GM’

AND date = ‘1/17/2007’

SELECT
sym = ‘GM’

SELECT
date=’1/17/07’

AVG
price

Disk
30.77

30.77

30.78

93.24

GM

GM

GM

AAPL

1,000

10,000

12,500

9,000

NYSE

NYSE

NYSE

NQDS

1/17/2007

1/17/2007

1/17/2007

1/17/2007

Construct Tuples

GM 30.77 1/17/07

Fields from same

tuple at same index

(position) in each

column file

Row-oriented

plan
Complete tuples

Complete tuples

Complete tuples

7 Query Processing Example

● C-Store
○ “Late Materialization”

Disk
30.77

30.77

30.78

93.24

GM

GM

GM

AAPL

1,000

10,000

12,500

9,000

NYSE

NYSE

NYSE

NQDS

1/17/2007

1/17/2007

1/17/2007

1/17/2007

Pos.SELECT
sym = ‘GM’

Pos.SELECT
date=’1/17/07’

AND

Position Bitmap
(1,1,1,1)

Position Bitmap
(1,1,1,0)

Position Bitmap
(1,1,1,0)

Position Lookup

Prices

AVG

Much less data

flowing through

memory

See Abadi et al

ICDE 07

3xGM

1XAPPL

4 x 1/17/2007

Column

Compression

Column Compression Schemes

Scheme Name Brief Description

Run Length Encoding Replace repeated values with a count and a value

Dictionary Encoding A variant is using integers to represent string

Lempel Ziv Encoding Builds data dictionary dynamically

Bit Packing Encode values with fewest possible bits

Delta Encoding Encode different with previous value and then bit pack

Bitmap Encoding Encode few valued columns as bitmaps, then subsequently

use e.g. RLE to further compress

8

9 Operating on Compressed Data

Disk
30.77

+0

+.01

+62.47

3xGM

1xAPPL

1,000

10,000

12,500

9,000

NYSE

NYSE

NYSE

NQDS

4x1/17/2007

Pos.SELECT
sym = ‘GM’

Pos.SELECT
date=’1/17/07’

AND

Position Bitmap
(4x1)

Position Bitmap
(3x1,1x0)

Position Bitmap
(3x1,1x0)

Position Lookup

Prices

AVG

Only possible

with late

materialization!

Compression

Aware

Deployment optimization for column-oriented store

● Problem: complicated compression not friendly for heavy write workload

● Solution: disaggregate storage: write to write-optimized column store, read

from WOS and read-optimized column store, async tuple mover to move data

from WOS to ROS

● Tuple mover write new objects (why)

● ROS objects are periodically merged

10

Transactions

● Groups a sequence of operations into an all-or-nothing unit
○ A powerful abstraction!

● Desirable properties (ACID)
○ Atomicity: All or nothing

○ Consistency: Maintains application-specific invariants

○ Isolation: Transaction “appears” to run alone on the database

○ Durability: Committed transactions’ writes persist even if the system crashes

● Transactions can be aborted by the user or DBMS

11denotes a key idea

12

13

14

Not conflict serializable:

Conflict Serializable => View Serializable

Conflict Serializable => Serializable

3 Ways to Test for Conflict Serializabiliy

1. Check: For all pairs of conflicting operations {O1 in T1,

O2 in T2} either
1. O1 always precedes O2, or

2. O2 always precedes O1.

2. Swap non-conflicting operations to get serial schedule

3. Build precedence graph, check for cycles

16

Prevents sneaky updates!

Problem: Cascading aborts

● If T1 aborts, T2, T3 and T4

also need to abort

● Solution: Just keep write

locks until the end!

17

T1 T2 T3 T4

WA

RA

RA

RA

ABORT

ABORT

ABORT

ABORT

Growing

phase

18

19

Example

● Permitted under strict 2PL but not rigorous 2PL:

20

T1: T2:

RA

WA

COMMIT

COMMIT

21

22

23

24

Preventing phantom reads

● Easy way: Acquire table locks

● But if we have a clustered index we don’t need to scan the whole table for the

range query. We can do better using “gap locks” / next key locking.

● Example:
○ DB Entries: 10, 11, 13, 20

○ T1: Scan entries > 18 → Also lock “gaps”, i.e. lock gap 14 - 20 and 20 -∞.

○ T2: Insert record 19 → Also needs to acquire the gap lock that T1 holds.

○ T1: Scan entries > 18 → No phantom read since T2 is waiting on the gap lock.

25

See Lecture 11-12 for details

27

Locking Granularity / Intention Locks

28

29

30

Do not acquire read

locks.

“Short” read

locks.

No gap locks.

Topics

● Transactions

● Logging and recovery (ARIES)

● Parallel/distributed databases (analytics and transactions)

● Systems “potpourri”
○ High-performance transactional systems (H-Store / Calvin / Aurora)

○ Eventual consistency (DynamoDB)

○ Cluster computing (Spark)

○ Cloud analytics (Snowflake)

● Cardinality estimation

31

Assumptions about crash

● Assume any data in memory is gone

● Data on disk is preserved

● → Recovery algorithms depend on when your system flushes pages

● Recovery ensures atomicity and durability in event of crash.

32

33

Steal: Can write dirty pages to

disk before the txn commits.

Force: Force writes to disk on

txn commit.

In GoDB, we do

FORCE / NO STEAL

and assume DB

won’t crash between

FORCE and

COMMIT

34

Write-

ahead log!

Types of Log Records

● Start (SOT) Log Sequence Number (LSN), Transaction ID (TID)
○ LSN is a monotonically increasing log record number

● End (EOT) LSN, TID, outcome (commit or abort)

● UNDO LSN, TID, before image

● REDO LSN, TID, after image

For next time:

● CHECKPOINT LSN, TID, state to limit how much is logged

● CLR LSN, TID, allows us to restart recovery

Recovery with NO FORCE / STEAL

● After crash, we must:
○ REDO “winner” transactions that had committed

○ UNDO “loser” transactions that had not committed

● Winner are transactions with SOT and COMMIT in log

● Losers are those with SOT and either (no EOT) or ABORT*

● Need to REDO winners from start to end

● Need to UNDO losers in reverse, from end to start

● Also need to UNDO aborted transactions
* Some disagreement in
literature about whether

ABORTed transactions are

losers

3 Phases of Recovery

● Analysis: Scan log to find winners and losers

● REDO: Scan log from beginning to end for winners

● UNDO: Scan log from end to beginning for losers

● Many possible ways to do this, e.g., UNDO then REDO or REDO then

UNDO

○ Next time will see a specific proposal and analyze why

Simplistic protocol

● Normal execution: Physical write-

ahead-logging

● Recovery: Replay log from beginning.

We can recover the exact state at the

crash (physical logging)

38

Simplistic protocol: Problem #1

● We don’t want to REDO things that are already reflected on disk (i.e. do an

operation twice). That’s a problem for escrows (e.g. record += 1).
○ Easy: Just keep a pageLSN field in the page header that tells you the last LSN that modified

the page (at the time the page was flushed).

39

1. REDO

Skip if LSN <= pageLSN

Simplistic protocol: Problem #2

● We want to recover to a state from which the user can resume normal

operation (no pending transactions that were uncommitted at crash).
○ Easy: Just keep track of which transactions were not committed at crash and UNDO them.

Can undo them logically (makes our life easier).

40

1. REDO 2. UNDO

Simplistic protocol: Problem #3 (last one!)

● This is super slow! Imagine we need to replay a log containing months of

transactions.

● Only the last couple of log entries really need to be REDOne and

UNDOne (with time pages get flushed & transactions commit)

41

1. REDO

Skip if LSN <= pageLSN

Simplistic protocol: Problem #3 (last one!)

● This is super slow! Image we need to replay a log containing months of

transactions.

● Only the last couple of log entries really need to be REDOne and UNDOne

● For each dirty page in the buffer pool, we keep track which was the first

LSN that dirtied it. → For this page, we only need to REDO the log from there.

42

Simplistic protocol: Problem #3 (last one!)

● For each dirty page in the buffer pool, we keep track which was the first LSN

that dirtied it. → For this page, we only need to REDO the log from there.
○ But where to keep this “dirty page table”?

○ Persist: Lots of logging and we need to force these writes to disk.

○ Memory: It will be lost at crash, so we need to start scanning the log from beginning again to

build it.

○ Solution: Checkpoints: Keep in memory but periodically write to disk.

○ You will need to scan some of the log to rebuild the dirty pages table, but not all of it!

○ At the same time you avoid doing a lot of forced writes!

43

Simplistic protocol: Problem #3 (last one!)

● What do we need to checkpoint to only re-scan some of the log?
○ Dirty page table

○ Transaction table

44

Simplistic protocol: Problem #3 (last one!)

● What do we need to checkpoint to only re-scan some of the log?
○ Dirty page table

○ Transaction table

45

Summary / ARIES

● Normal operation:
○ Physical write-ahead-logging

○ Include LSN of last update in page headers (pageLSN)

○ Keep track of active transactions (for UNDO) and LSNs that first dirtied a page (for REDO) →

checkpoint that periodically.

● Recovery:
○ Analysis phase: Start from last checkpoint in log and reconstruct transaction table and dirty

page table at time of crash.

○ REDO phase: Physically REDO log records that haven’t been flushed before crash. After that,

your system will be in the state at the crash.

○ UNDO phase: UNDO transactions that weren’t committed at the time of the crash (“losers”).

46

47

UNDO

● We need to log UNDOs
○ If we crash during recovery

○ If we crash while rolling back an aborted transaction

○ These log records are called Compensation Log Records (CLRs)

● Check where to start UNDO (lastLSN in Transaction Table) and UNDO each

update going backwards using the prevLSN field in log

48

UNDO

● We need to log UNDOs
○ If we crash during recovery

○ If we crash while rolling back an aborted transaction

○ These log records are called Compensation Log Records (CLRs)

● Check where to start UNDO (lastLSN in Transaction Table) and UNDO each

update going backwards using the prevLSN field in log

49

50

Topics

● Transactions

● Logging and recovery (ARIES)

● Parallel/distributed databases (analytics and transactions)

● Systems “potpourri”
○ High-performance transactional systems (H-Store / Calvin / Aurora)

○ Eventual consistency (DynamoDB)

○ Cluster computing (Spark)

○ Cloud analytics (Snowflake)

● Cardinality estimation

51

Distributed and Parallel Databases

● Same semantics as a single-node ACID SQL database, but on multiple

cores/machines

● Distributed databases must deal with node failures

52

Ways to Partition the Data

● Round-robin
○ Perfect load-balancing (data-wise)

○ Often all nodes need to participate in a query

● Hash
○ Pretty good load balancing (unless many duplicates)

○ Bad at range analytical queries (cannot easily skip partitions)

● Range
○ Good at range / localized analytical queries

○ Can be bad at load-balancing (data skew)

53

Parallel Joins (Hash Partitioning and Equijoins)

● Partitioned on join attributes? Run join locally on each partition.

● Otherwise, two options (non-exhaustive):

● Re-partition (one or both tables): “shuffle join”
○ Each node transmits and receives (|T| / n) / n * (n - 1) bytes per repartitioned table

● Replicate table across all nodes
○ Each node transmits and receives (|T| / n) * (n - 1) bytes

54

Distributed Transactions: Two Phase Commit

● Distributed algorithm used to make a commit/abort decision for multiple

“sites”
○ “Commit only if all participants agree to commit”

● Requires a coordinator

● Often considered a performance bottleneck

55

Two Phase Commit

56

Topics

● Transactions

● Logging and recovery (ARIES)

● Parallel/distributed databases (analytics and transactions)

● Systems “potpourri”
○ High-performance transactional systems (H-Store / Calvin / Aurora)

○ Eventual consistency (DynamoDB)

○ Cluster computing (Spark)

○ Cloud analytics (Snowflake)

● Cardinality estimation

57

Topics

● Transactions

● Logging and recovery (ARIES)

● Parallel/distributed databases (analytics and transactions)

● Systems “potpourri”
○ High-performance transactional systems (H-Store / Calvin / Aurora)

○ Eventual consistency (DynamoDB)

○ Cluster computing (Spark)

○ Cloud analytics (Snowflake)

● Cardinality estimation

61

CAP theorem

● Consistency, availability, partition-tolerance: You can have 2, not all 3

● ACID has strong consistency but will appear down if machines go down or

network becomes partitioned

● Many systems choose availability over consistency (e.g. NoSQL)

62

Dynamo

● Availability

● Partitioning
○ for scaling

○ consistent hashing

● Replication
○ for fault tolerance and performance

○ ‘N’ successors in the ring stores the key

● Vector clocks for detecting conflicting writes

63

Vector Clock Updates

● Each coordinator maintains a version counter for each data item that

increments for every write it coordinates
● If a node stores m objects, it stores m vector clocks along with them

● Each vector clock has n entries, which denote the number of writes done by each of n

coordinators

● Clock for one data item A at coordinator i

○ before: 𝑉𝐴[1], …, 𝑉𝐴[i], …, 𝑉𝐴[n]

○ after: : 𝑉𝐴[1], …, 𝑽𝑨[i]+1, …, 𝑉𝐴[n]

64

Vector Clock

● Read - Read from the quorums

● E.g.: Read V1, V2, V3 - If one of these, say V1, is greater than the others for

every component, V1 is the latest value and we can reconcile based on

vector clocks

● What if they are incomparable? ---> i.e., can’t decide which is the latest

version of the data
○ V1 = [1, 1], V2 = [2, 0]

○ Return both data versions, and use application-specific reconciliation

65

Dynamo Question (2015)

V1 =< R1 : 0, R2 : 3, R3 : 2 >

V2 =< R1 : 1, R2 : 3, R3 : 2 >

V3 =< R1 : 0, R2 : 0, R3 : 3 >

66

A) The writer that produced V1 observed V2

B) The writer that produced V2 observed V1

C) V2 and V3 are :”concurrent writes” (cannot be

reconciled)

Which of the following statements are true?

Topics

● Transactions

● Logging and recovery (ARIES)

● Parallel/distributed databases (analytics and transactions)

● Systems “potpourri”
○ High-performance transactional systems (H-Store / Calvin / Aurora)

○ Eventual consistency (DynamoDB)

○ Cluster computing (Spark)

○ Cloud analytics (Snowflake)

● Cardinality estimation

67

Topics

● Transactions

● Logging and recovery (ARIES)

● Parallel/distributed databases (analytics and transactions)

● Systems “potpourri”
○ High-performance transactional systems (H-Store / Calvin / Aurora)

○ Eventual consistency (DynamoDB)

○ Cluster computing (Spark)

○ Cloud analytics (Snowflake)

● Cardinality estimation

71

72

Cardinality Estimation for one column

Equal width vs Equal depth histograms

Source of error: Within this large

bucket, assume uniformity

Pros

- More detail where there is more data
---> uniformity assumption more
accurate

- Fast to compute

Cons
- Less detail in other regions (e.g., in

the large bins)

Cardinality Estimation for 2 columns

- Take selectivity estimates for single columns, and assume they are

independent, i.e. multiply selectivities.

Pros

- Fast to compute
- Don’t need to store 2d distributions etc.

Cons
- Columns are often correlated (might severely misestimate then)

- Errors will accumulate as more columns / joins added

Main Assumptions

- Uniformity
- Within a bin of histogram; (or when computing joins)

- Independence
- When combining selectivities for multiple columns

	Slide 1: 6.5830 / 6.5831 Quiz 2 Review 🔍
	Slide 2: Logistics
	Slide 3: Topics
	Slide 4: Column Store
	Slide 5: Linearizing a Table – Column Store
	Slide 6: Query Processing Example
	Slide 7: Query Processing Example
	Slide 8: Column Compression Schemes
	Slide 9: Operating on Compressed Data
	Slide 10: Deployment optimization for column-oriented store
	Slide 11: Transactions
	Slide 12
	Slide 13
	Slide 14
	Slide 15: 3 Ways to Test for Conflict Serializabiliy
	Slide 16
	Slide 17: Problem: Cascading aborts
	Slide 18
	Slide 19
	Slide 20: Example
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Preventing phantom reads
	Slide 27: Locking Granularity / Intention Locks
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Topics
	Slide 32: Assumptions about crash
	Slide 33
	Slide 34
	Slide 35: Types of Log Records
	Slide 36: Recovery with NO FORCE / STEAL
	Slide 37: 3 Phases of Recovery
	Slide 38: Simplistic protocol
	Slide 39: Simplistic protocol: Problem #1
	Slide 40: Simplistic protocol: Problem #2
	Slide 41: Simplistic protocol: Problem #3 (last one!)
	Slide 42: Simplistic protocol: Problem #3 (last one!)
	Slide 43: Simplistic protocol: Problem #3 (last one!)
	Slide 44: Simplistic protocol: Problem #3 (last one!)
	Slide 45: Simplistic protocol: Problem #3 (last one!)
	Slide 46: Summary / ARIES
	Slide 47
	Slide 48: UNDO
	Slide 49: UNDO
	Slide 50
	Slide 51: Topics
	Slide 52: Distributed and Parallel Databases
	Slide 53: Ways to Partition the Data
	Slide 54: Parallel Joins (Hash Partitioning and Equijoins)
	Slide 55: Distributed Transactions: Two Phase Commit
	Slide 56: Two Phase Commit
	Slide 57: Topics
	Slide 61: Topics
	Slide 62: CAP theorem
	Slide 63: Dynamo
	Slide 64: Vector Clock Updates
	Slide 65: Vector Clock
	Slide 66: Dynamo Question (2015)
	Slide 67: Topics
	Slide 71: Topics
	Slide 72
	Slide 73: Cardinality Estimation for one column
	Slide 74: Cardinality Estimation for 2 columns
	Slide 75: Main Assumptions

