There are 15 questions and 10 pages in this quiz booklet. To receive credit for a question, answer
it according to the instructions given. You can receive partial credit on questions. You have 80
minutes to answer the questions.

Write your name on this cover sheet AND at the bottom of each page of this booklet.
Some questions may be harder than others. Attack them in the order that allows you to make
the most progress. If you find a question ambiguous, be sure to write down any assumptions you
make. Be neat. If we can’t understand your answer, we can’t give you credit!

THIS IS AN OPEN BOOK, OPEN NOTES QUIZ.
YOU MAY USE A LAPTOP OR CALCULATOR.
YOU MAY NOT ACCESS THE INTERNET.

Do not write in the boxes below

<table>
<thead>
<tr>
<th>1-4 (xx/20)</th>
<th>5-7 (xx/26)</th>
<th>8-10 (xx/22)</th>
<th>11-15 (xx/32)</th>
<th>Total (xx/100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name:
I ARIES Recovery

Consider a DBMS running the ARIES recovery algorithm as described in the paper by C. Mohan. The table below shows the log on disk prior to a crash. The system crashes just after T3 commits / log record 19 is written. Two checkpoints are taken at the indicated times. No flushes occur during the execution of these transactions. At the time of checkpoint1, the dirty page table and the transaction table are both empty.

<table>
<thead>
<tr>
<th>LSN</th>
<th>Xaction ID</th>
<th>Type</th>
<th>PageID/Object name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checkpoint 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>T1</td>
<td>SOT</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>T1</td>
<td>UP</td>
<td>P1/A</td>
</tr>
<tr>
<td>13</td>
<td>T2</td>
<td>SOT</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>T3</td>
<td>SOT</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>T2</td>
<td>UP</td>
<td>P5/B</td>
</tr>
<tr>
<td>16</td>
<td>T2</td>
<td>COMMIT</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>T3</td>
<td>UP</td>
<td>P3/C</td>
</tr>
<tr>
<td>Checkpoint 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>T3</td>
<td>UP</td>
<td>P1/A</td>
</tr>
<tr>
<td>19</td>
<td>T3</td>
<td>COMMIT</td>
<td></td>
</tr>
</tbody>
</table>

1. [4 points]: At what LSN does the analysis phase begin?

2. [4 points]:
At what LSN does the REDO phase begin?

3. [4 points]:
What is the first LSN that is undone?

Name:
4. [8 points]:

Fill in the blanks in the tables below to reflect their status in memory at the time of the crash.

<table>
<thead>
<tr>
<th>PageID</th>
<th>recLSN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>lastLSN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dirty Page Table

Transaction Table

II Locking

Ben Bitdiddle is running an online bookstore, BensBooks.com. He has a transaction, buy_book(customer, book_title), which allows a customer to buy any book as long as it is in stock.

At the moment, Ben is running a promotion in which customers ordering for the first time get two copies of the book when they place an order.

L1: order_cnt = SELECT count(*) FROM orders WHERE cust = customer
L2: qty = (order_cnt == 0 ? 2 : 1)
L3: book_cnt = SELECT available_copies FROM inventory WHERE title = book_title
L4: IF book_cnt >= qty
L6: INSERT INTO orders VALUES (customer, book_title, qty)

The line numbers L1...L6 are labels for use in describing schedules; they are not part of the code. The expression (order_cnt == 0 ? 2 : 1) has the value 2 if order_cnt is 0, and 1 otherwise. Also note that only statements containing SQL queries actually read or modify records in the database.

One day, Alice, Bob, and Steve (all regular customers of BensBooks.com with previous orders) attempt to buy To Kill a Mockingbird from BensBooks.com at the same time, causing the database to run the following three transactions, T1, T2, and T3 concurrently:

T1. buy_book(Alice, To Kill a Mockingbird)
T2. buy_book(Bob, To Kill a Mockingbird)
T3. buy_book(Steve, To Kill a Mockingbird)
5. [10 points]: Ben has two copies of *To Kill a Mockingbird* in stock. To his surprise, after the above three transactions complete, each customer thinks he or she has successfully purchased the book. Furthermore, the inventory table shows that there is still one copy of *To Kill a Mockingbird* available. Show an interleaving of the above commands that could result in this outcome. Indicate your answer by filling in the 18 lines below, using the L1…L6 labels above, prepended with the transaction IDs (e.g., T1L1, T2L2, etc). Assume each of the lines is executed atomically.

(Write your answer in the space below.)

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Below we reproduce L1–L6 for your reference:

```sql
buy_books(customer, book_title):
L1: order_cnt = SELECT count(*) FROM orders WHERE cust = customer
L2: qty = (order_cnt == 0 ? 2 : 1)
L3: book_cnt = SELECT available_copies FROM inventory WHERE title = book_title
L4: IF book_cnt >= qty
L6: INSERT INTO orders VALUES (customer, book_title, qty)
```

Name:
6. **[6 points]:** Ben realizes that this error probably happened because his database does not have a locking protocol. To fix it, he implements support for strict two-phase locking with record-level shared and exclusive locks. He also modifies the code of `buy_book` to issue a `BEGIN TRANSACTION` before L1, and a `COMMIT` after L6. Explain briefly why this fixes the problem.

(Write your answer in the space below.)

7. **[10 points]:** A new customer, Annie Hacker, creates a BensBooks.com account and logs into it on 10 different friends’ laptops. On Annie’s cue, her friends simultaneously order a copy of *Harry Potter and the Chamber of Secrets*. A few days later, 20 copies of *Harry Potter and the Chamber of Secrets* show up at Annie’s door. How did this happen? What can Ben do to prevent this sort of scam from happening again in the future?

(Write your answer in the space below.)

Name:
III Two-phase commit

Consider the Two-phase commit protocol, as described in the paper “Transaction Management in the R* Distributed Database Management System” by Mohan et al. Suppose you are running the protocol with three nodes, a coordinator C, and two workers, W1 and W2. Suppose the coordinator stores data and participates in query processing as well (i.e., reads and writes its own data items.)

You are listening on the network connection between C and W1 and C and W2, and you see the following messages. Note that the network is lossy, so there may be additional messages that were sent that you did not see (in which case the recipient also would not receive them), and some messages that you see that the recipient does not receive. This means that some of the messages shown below may not reach their destination.

Unless otherwise stated, assume you are running the standard (neither presumed abort nor presumed commit) variant of the two-phase commit protocol.

At the end of this set of messages, the coordinator crashes.

C <-----> W1
---> PREPARE T1
<--- VOTE YES FOR T1
---> PREPARE T2
<--- VOTE YES FOR T2
----> PREPARE T3
<--- VOTE READ ONLY FOR T3
-----> COMMIT T2
<---- ACK COMMIT T2

C <-----> W2
-----> PREPARE T1
-----> PREPARE T2
<---- VOTE YES FOR T2
<---- VOTE NO FOR T1
-----> PREPARE T3
<---- VOTE READ ONLY FOR T3
-----> COMMIT T2

To understand the notation here, the first ---> PREPARE T1 indicates that C sends a PREPARE T1 message to W1.

8. [6 points]: For transactions T1/T2/T3 indicate whether they will abort or commit when the coordinator recovers, or whether their outcome is unknown (cannot be determined given the messages above). (Circle ABORT, COMMIT, or UNKNOWN for T1–T3)

T1: ABORT COMMIT UNKNOWN
T2: ABORT COMMIT UNKNOWN
T3: ABORT COMMIT UNKNOWN

Name:
9. [8 points]: Which of the following statements about the operation of the two-phase commit protocol in the above example is true?

(Circle True or False for each item below.)

A. True / False C definitely will send additional messages about transaction T3

B. True / False If running the presumed abort variant of the protocol, C definitely will not send any messages regarding transaction T1

C. True / False C definitely will not send any additional messages about transaction T2 to W1

D. True / False C definitely will send additional messages about transaction T2 to W2

IV Spark and RDDs

10. [8 points]: Which of the following statements about the paper “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing” by Zaharia et al are true:

(Circle True or False for each item below.)

A. True / False For fault tolerance, the authors propose logging and replaying previous operations on datasets stored persistently on disk.

B. True / False Like C-Store, Spark employs vertical partitioning of datasets to improve performance.

C. True / False When running on datasets that exceed the size of memory, Spark generally performs about the same as Hadoop.

D. True / False The primary goal of the Spark paper is to provide relational algebra-like abstractions (join, group by, etc.) on top of HDFS.

Name:
V Optimistic Concurrency Control

Suppose you are running the serial validation variant of optimistic concurrency control. Below we give example read and write sets for pairs of transactions T_1 and T_2, where T_1 is assigned its transaction ID before T_2, and T_2 starts its read phase before T_1 completes its write phase.

For each pair of read/write sets, indicate whether T_2 will commit or abort, or whether it is not possible to tell (“unknown”).

11. [4 points]: T_1: Read Set: \{A,B\}, Write Set: \{A\} T_2: Read Set: \{A,B\}, Write Set: \{B\}
 (Circle ABORT, COMMIT, or UNKNOWN T_2 outcome)

 T_2 Outcome: ABORT COMMIT UNKNOWN

12. [6 points]: T_1: Read Set: \{A,C\}, Write Set: \{A\} T_2: Read Set: \{B,C\}, Write Set: \{A\}
 (Circle ABORT, COMMIT, or UNKNOWN for T_2 outcome)

 T_2 Outcome: ABORT COMMIT UNKNOWN

13. [6 points]: T_1: Read Set: \{A,C\}, Write Set: \{A\} T_2: Read Set: \{B,C\}, Write Set: \{A,B\}
 (Circle ABORT, COMMIT, or UNKNOWN for T_2 outcome)

 T_2 Outcome: ABORT COMMIT UNKNOWN
You are given a Dynamo instance with nodes A-L, as shown below.

This graph has no virtual nodes, a sloppy quorum, and uses an N/R/W configuration of 3/1/3.

14. [8 points]:
If a write for key x arrives and node K is off-line, which of the following is a valid set of nodes to participate in the write:

(Circle “Yes” if the set of write participants is valid, “No” otherwise.)

A. Yes / No J,L
B. Yes / No J,K,L
C. Yes / No J,L,A
D. Yes / No I,J,K

Name:
Now suppose you are using the same Dynamo instance, with an N/R/W configuration of 4/2/2.

15. [8 points]:

If a read for key y arrives and no nodes in the system have ever been off-line, which of the following is a valid set of nodes to participate in the read?

(Circle “Yes” if the set of read participants is valid, “No” otherwise.)

A. Yes / No C
B. Yes / No C,F
C. Yes / No D,G
D. Yes / No B,C,D,E

End of Quiz II