“Those who cannot remember the past are doomed to repeat it”
OTHER DATA MODELS

• Object-Oriented Database Systems (OODB)
• Object-Relational Database Systems (ORDB)
• Document stores
• XML Database Systems / Xquery
• RDF
• Key/Value Stores
MODELING RELATIONS
ENTITY/RELATIONSHIP (ER) MODEL

Entity

Student

Relationship

attends

Attribute

Name

Key

Student-ID

Student-ID

Role

Attendant
ENTITY/RELATIONSHIP (ER) MODEL

Entity:
- Student
 - Student-ID
 - Name
- Course
 - Course-ID
 - CP
 - Title

Relationship:
- attends
 - Student
 - Lecture
 - Course

Attribute:
- Student
 - Name
- Lecture
 - CP
 - Title

Key:
- Student-ID
- Course-ID
WHY ERM

Advantages

- ER diagrams are easy to create
- ER diagrams are easy to edit
- ER diagrams are easy to read (from the layman)
- ER diagrams express all information requirements

Other aspects

- Minimality
- Tools (e.g., Visio)
- Graphical representation

General

- Try to be concise, complete, comprehensible, and correct
- Controversy whether ER/UML is useful in practice
- No controversy that everybody needs to learn ER/UML
FUNCTIONALITIES

\[R \subseteq E_1 \times E_2 \]
EXAMPLE: PROFESSOR <-> LECTURE

Student-Name

Student-ID

Name

attends

avisd

N

M

Lecture

Course-ID

CP

Title
SOMETIMES ALSO SHOWN AS

![Database diagram showing relationships between Student, Lecture, Course-ID, CP, and Title.]

- Student: ID, Name
- Lecture: N
- Student to Lecture: M
- Lecture: Course-ID, CP, Title
FUNCTIONALITIES OF N-ARY RELATIONSHIPS

\[R : E_1 \times \ldots \times E_{k-1} \times E_{k+1} \times \ldots \times E_n \rightarrow E_k \]
EXAMPLE CS MASTER THESIS

supervise : Professor \times Student \rightarrow Topic

supervise : Topic \times Student \rightarrow Professor
Professor

Student

Person-ID

Name

Student-ID

Name

Grade

Tests

Attends

Gives

Lecture

Course-ID

Title

CP
QUESTION

Model a music record database

• An album has a unique name and songs have unique titles
• An album contains several songs
• A playlist has a unique name and is created by one user with a unique login
• A playlist contains several songs from potential different albums
CLICKER QUESTION

A)

Album

Songs

Playlist

User

B)

Album

Songs

Playlist

User

C)

Album

Songs

Playlist

User

http://clicker.csail.mit.edu/6.814/
ATTRIBUTE VS ENTITY

Should the *grade* be an entity or attribute?
Should test be an entity or relationship?
RULES OF THUMB

Attribute vs. Entity

- Entity if the concept has more than one relationship
- Attribute if the concept has only one 1:1 relationship

Partitioning of ER Models

- Most realistic models are larger than a page
- Partition by domains (library, research, finances, ...)

Good vs. Bad models

- Do not model redundancy or tricks to improve performance
- Less entities is better (the fewer, the better!)
- Remember the 5 C’s (clear, concise, correct, complete, compliant)
LIMITATIONS OF ERM
LIMITATIONS OF ERM

ER has no formal semantics
- unclear whether this is a bug or a feature
- (natural language has no formal semantics either)

No way to express relationships between sets of entities
- e.g., existence of person depends on a set of organs
- sets of sets are notoriously hard to model
- (more on that when we talk about 4 NF)

No way to express negative rules
- e.g., same entity cannot be an Assistant and Professor
- again, negation notoriously hard (e.g., 2nd-order logic)

ER has been around for 30+ years
- maybe, ER hit sweet spot of expressivity vs. simplicity
- (UML class diagrams inherit same weaknesses)
WHY IS ER MODELLING SO DIFFICULT?

Global Schema
• No redundancy
• No conflicts
• Avoid synonyms
• Avoid homonyms

Where is the current research going?
ERM TO RELATIONS
RULE #1: ENTITIES

Professor(Person-ID:integer, Name:string)
Student(Student-ID:integer, Name:string)
Lecture(Course-ID:string, Title:string, CP:float)
RULE #2: RELATIONSHIPS

\[R: \{ \left[A_{11}, \ldots, A_{1k_1} \right], \left[A_{21}, \ldots, A_{2k_2} \right], \ldots, \left[A_{n1}, \ldots, A_{nk_n} \right], \left[A_1^R, \ldots, A_{k_R}^R \right] \} \]

Key of \(E_1 \)
Key of \(E_2 \)
Key of \(E_n \)
Attributes of \(R \)
RULE #2: RELATIONSHIPS

Professor(Person-ID:integer, Name:string)
Student(Student-ID:integer, Name:string)
Lecture(Course-ID:string, Title:string, CP:float)
Gives(Person-ID:integer, Course-ID:string)
Attends(Student-ID:integer, Course-ID:string)
Tests(Student-ID:integer, Course-ID:string, Person-ID:integer, Grade:String)

What about keys?
RULE #2: RELATIONSHIPS

Professor(Person-ID:integer, Name:string)
Student(Student-ID:integer, Name:string)
Lecture(Course-ID:string, Title:string, CP:float)
Gives(Person-ID:integer, Course-ID:string)
Attends(Student-ID:integer, Course-ID:string)
Tests(Student-ID:integer, Course-ID:string, Person-ID:integer, Grade:string)
RULE #3: MERGE RELATIONS WITH THE SAME KEY

<table>
<thead>
<tr>
<th>Professor</th>
<th>Person-ID:integer, Name:string</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>Course-ID:string, Title:string, CP:float</td>
</tr>
<tr>
<td>Gives</td>
<td>Person-ID:integer, Course-ID:string</td>
</tr>
</tbody>
</table>

Professor (Person-ID:integer, Name:string)
Lecture(*Course-ID:*string, Title:string, CP:float)
Gives(Person-ID:integer, *Course-ID:*string)

Professor(Person-ID:integer, Name:string)
Lecture(*Course-ID:*string, Title:string, CP:float, Person-ID:integer)
Why didn’t we merge **Attends** and **Tests**?
EXERCISE

Implement the following ER diagram using the rel. data model

![ER Diagram]

- Number
 - 1
 - 1
 - plus
 - 1
PROBLEM

• You are the new Data Scientist at Evil Market
• Evil Market is tracking all customer purchases with their membership card or credit card
• They also have data about their customers (estimated income, family status,...)
• Recently, they are trying to improve their image for young mothers
• As a start they want to know the following information for mothers under 30 for 2013:
 • How much do they spend?
 • How much do they spend per state?
 • How does this compare to all customers under 30?
 • What are their favorite products?
 • How much do they spend per year?

Your first project: Design the schema for Evil Market!